We describe here how to generate a simple history file for computation with Noddy using the functionality of pynoddy. If possible, it is advisable to generate the history files with the Windows GUI for Noddy as this method provides, to date, a simpler and more complete interface to the entire functionality.
For completeness, pynoddy contains the functionality to generate simple models, for example to automate the model construction process, or to enable the model construction for users who are not running Windows. Some simple examlpes are shown in the following.
In [1]:
from matplotlib import rc_params
In [1]:
from IPython.core.display import HTML
css_file = 'pynoddy.css'
HTML(open(css_file, "r").read())
Out[1]:
In [2]:
import sys, os
import matplotlib.pyplot as plt
# adjust some settings for matplotlib
from matplotlib import rcParams
# print rcParams
rcParams['font.size'] = 15
# determine path of repository to set paths corretly below
os.chdir(r'/Users/flow/git/pynoddy/docs/notebooks/')
repo_path = os.path.realpath('../..')
import pynoddy.history
In [3]:
%pylab inline
In [4]:
rcParams.update({'font.size': 20})
In [9]:
# Combined: model generation and output vis to test:
history = "simple_model.his"
output_name = "simple_out"
reload(pynoddy.history)
reload(pynoddy.events)
nm = pynoddy.history.NoddyHistory()
# add stratigraphy
strati_options = {'num_layers' : 8,
'layer_names' : ['layer 1', 'layer 2', 'layer 3', 'layer 4', 'layer 5', 'layer 6', 'layer 7', 'layer 8'],
'layer_thickness' : [1500, 500, 500, 500, 500, 500, 500, 500]}
nm.add_event('stratigraphy', strati_options )
nm.write_history_tmp(history)
In [10]:
# Compute the model
reload(pynoddy)
pynoddy.compute_model(history, output_name)
In [11]:
# Plot output
reload(pynoddy.output)
nout = pynoddy.output.NoddyOutput(output_name)
nout.plot_section('y', layer_labels = strati_options['layer_names'][::-1],
colorbar = True, title="",
savefig = True, fig_filename = "ex01_strati.eps")
In [317]:
reload(pynoddy.history)
reload(pynoddy.events)
nm = pynoddy.history.NewHistory()
# add stratigraphy
strati_options = {'num_layers' : 8,
'layer_names' : ['layer 1', 'layer 2', 'layer 3', 'layer 4', 'layer 5', 'layer 6', 'layer 7', 'layer 8'],
'layer_thickness' : [1500, 500, 500, 500, 500, 500, 500, 500]}
nm.add_event('stratigraphy', strati_options )
# The following options define the fault geometry:
fault_options = {'name' : 'Fault_E',
'pos' : (6000, 0, 5000),
'dip_dir' : 270,
'dip' : 60,
'slip' : 1000}
nm.add_event('fault', fault_options)
In [318]:
nm.events
Out[318]:
In [319]:
nm.write_history(history)
In [320]:
# Compute the model
pynoddy.compute_model(history, output_name)
In [321]:
# Plot output
reload(pynoddy.output)
nout = pynoddy.output.NoddyOutput(output_name)
nout.plot_section('y', layer_labels = strati_options['layer_names'][::-1],
colorbar = True, title = "",
savefig = True, fig_filename = "ex01_fault_E.eps")
In [34]:
# The following options define the fault geometry:
fault_options = {'name' : 'Fault_1',
'pos' : (5500, 3500, 0),
'dip_dir' : 270,
'dip' : 60,
'slip' : 1000}
nm.add_event('fault', fault_options)
In [35]:
nm.write_history(history)
In [36]:
# Compute the model
pynoddy.compute_model(history, output_name)
In [37]:
# Plot output
reload(pynoddy.output)
nout = pynoddy.output.NoddyOutput(output_name)
nout.plot_section('y', layer_labels = strati_options['layer_names'][::-1], colorbar = True)
In [39]:
nm1 = pynoddy.history.NoddyHistory(history)
In [40]:
nm1.get_extent()
Out[40]:
In [372]:
reload(pynoddy.history)
reload(pynoddy.events)
nm = pynoddy.history.NewHistory()
# add stratigraphy
strati_options = {'num_layers' : 8,
'layer_names' : ['layer 1', 'layer 2', 'layer 3', 'layer 4', 'layer 5', 'layer 6', 'layer 7', 'layer 8'],
'layer_thickness' : [1500, 500, 500, 500, 500, 500, 500, 500]}
nm.add_event('stratigraphy', strati_options )
# The following options define the fault geometry:
fault_options = {'name' : 'Fault_W',
'pos' : (4000, 3500, 5000),
'dip_dir' : 90,
'dip' : 60,
'slip' : 1000}
nm.add_event('fault', fault_options)
# The following options define the fault geometry:
fault_options = {'name' : 'Fault_E',
'pos' : (6000, 3500, 5000),
'dip_dir' : 270,
'dip' : 60,
'slip' : 1000}
nm.add_event('fault', fault_options)
nm.write_history(history)
In [373]:
# Change cube size
nm1 = pynoddy.NoddyHistory(history)
nm1.change_cube_size(50)
nm1.write_history(history)
In [374]:
# Compute the model
pynoddy.compute_model(history, output_name)
In [375]:
# Plot output
reload(pynoddy.output)
nout = pynoddy.output.NoddyOutput(output_name)
nout.plot_section('y', layer_labels = strati_options['layer_names'][::-1],
colorbar = True, title="",
savefig = True, fig_filename = "ex01_faults_combined.eps",
cmap = 'YlOrRd') # note: YlOrRd colourmap should be suitable for colorblindness!
In [87]:
nout.export_to_vtk()
In [124]:
# Compare to "simple two faults" model in examples folder
nm_faults = pynoddy.history.NoddyHistory(r'../../examples/simple_two_faults.his')
In [125]:
nm_faults.events
Out[125]:
In [145]:
nm_faults.events[3].properties
Out[145]:
In [128]:
nm_faults.write_history("test_ori")
In [129]:
pynoddy.compute_model("test_ori", "ori_fault")
In [132]:
n_out_faults = pynoddy.output.NoddyOutput("ori_fault")
In [133]:
n_out_faults.plot_section('y')
In [187]:
nout.plot_section('y', layer_labels = strati_options['layer_names'][::-1], colorbar = True)
In [328]:
os.getcwd()
Out[328]:
In [ ]: