In [1]:
%matplotlib inline
Just checking the logic.
In [2]:
import matplotlib.pyplot as plt
from dcprogs.likelihood import plot_time_series
from dcprogs.likelihood.random import time_series as random_time_series
perfect, series = random_time_series(N=100, n=100, tau=1)
print(perfect)
fig, ax = plt.subplots(1,1)
plot_time_series(perfect, ax=ax)
plot_time_series(series, ax=ax, marker='*', color='k', linestyle=':')
In [3]:
from dcprogs.likelihood import time_filter as cpp_time_filter
filtered = cpp_time_filter(series, 1)
fig, ax = plt.subplots(1,1)
plot_time_series(perfect, ax=ax)
plot_time_series(filtered, ax=ax, marker='*', color='k', linestyle=':')
Now, computes the likelihood of this time series for a random QMatrix
In [ ]: