Experiments with Synthetic Data

This notebook shows how to reproduce the experiments in Approximate Inference for Constructing Astronomical Catalogs from Images using the Celeste.jl package and Julia 0.6.4. To install Celeste, run

Pkg.update()
Pkg.add("Celeste")

In [1]:
Pkg.status("Celeste")


 - Celeste                       0.4.0+             reproducibility (dirty)

In [2]:
import Celeste: AccuracyBenchmark, SDSSIO, Synthetic, ParallelRun
using DataFrames
import PyPlot

1. Visually check that synthetic data resembles real data


In [3]:
coadd_catalog = AccuracyBenchmark.load_coadd_catalog(AccuracyBenchmark.COADD_CATALOG_FITS)

# filter the coadd catalog -- these columns can't be missing
no_na_cols = :flux_r_nmgy, :color_ug, :color_gr, :color_ri, :color_iz
for col in no_na_cols
    coadd_catalog = coadd_catalog[.!ismissing.(coadd_catalog[col]), :]
end

In [4]:
# load SDSS images
dataset = SDSSIO.SDSSDataSet(AccuracyBenchmark.SDSS_DATA_DIR)
sdss_images = SDSSIO.load_field_images(dataset, AccuracyBenchmark.STRIPE82_RCF);
plot_data = AccuracyBenchmark.plot_image(sdss_images[3]);
PyPlot.imshow(plot_data)


Out[4]:
PyObject <matplotlib.image.AxesImage object at 0x7f20417187f0>

In [5]:
# generate images by conditioning on the coadd catalog
conditional_images = deepcopy(sdss_images)
catalog_entries = [
    AccuracyBenchmark.make_catalog_entry(row)
        for row in eachrow(coadd_catalog)]
Synthetic.gen_images!(conditional_images, catalog_entries)
plot_data = AccuracyBenchmark.plot_image(conditional_images[3]);
PyPlot.imshow(plot_data)


Out[5]:
PyObject <matplotlib.image.AxesImage object at 0x7f2048d8f5c0>

2. Draw a catalog from the prior


In [6]:
prior_catalog = AccuracyBenchmark.generate_catalog_from_celeste_prior(500, 12345)
head(prior_catalog)


Out[6]:
radecis_starflux_r_nmgycolor_ugcolor_grcolor_ricolor_izgal_frac_devgal_axis_ratiogal_radius_pxgal_angle_deg
10.5359030.627301false7.5945-0.1725411.098210.643075-0.3817250.2729050.0962911.84125166.017
20.5443440.550995false0.989773-4.283711.371870.4961611.301010.7206520.6551176.178750.211
30.4556790.442466true8.917593.312711.224920.3581780.269155missingmissingmissingmissing
40.4699840.473291false4.059660.597365-0.004978660.2886150.5987560.3869870.46395510.297287.5557
50.4926340.452557true5.925520.721352.001721.532891.0992missingmissingmissingmissing
60.5241730.563189false0.217006-1.085061.645670.811115-0.08725540.2093620.5036847.2228597.8714

3. Draw an image set conditional on the sampled catalog


In [7]:
# generate images based on the prior catalog
prior_images = deepcopy(sdss_images)
catalog_entries = [
    AccuracyBenchmark.make_catalog_entry(row)
        for row in eachrow(prior_catalog)]
Synthetic.gen_images!(prior_images, catalog_entries)
plot_data = AccuracyBenchmark.plot_image(prior_images[3]);
PyPlot.imshow(plot_data)


Out[7]:
PyObject <matplotlib.image.AxesImage object at 0x7f2048bfb4e0>

4. Run variational inference (VI) on the image set

The next block of code takes about 30 minutes single threaded. To enable more threads, before launching Jupyter, set two environment variables:

export OMP_NUM_THREADS=1
export JULIA_NUM_THREADS=4

In [8]:
box = ParallelRun.BoundingBox(-1000.0, 1000.0, -1000.0, 1000.0)
vi_results = ParallelRun.infer_box(prior_images, box; method = :single_vi);
celeste_catalog = AccuracyBenchmark.celeste_to_df(vi_results);


[1]<1> INFO: processing box -1000.0, 1000.0, -1000.0, 1000.0 with 4 threads
[1]<1> INFO: #1 at (0.4462509311342979, 0.598775974993399): 21.217022319 secs
[1]<3> INFO: #3 at (0.447064515380352, 0.5454567403117805): 21.323841421 secs
[1]<2> INFO: #4 at (0.4470447140950976, 0.5271336447728052): 21.777263887 secs
[1]<4> INFO: #2 at (0.44659298178348517, 0.412018134304243): 21.840257324 secs
[1]<3> INFO: #6 at (0.44894263343603436, 0.5216007961964171): 0.673457146 secs
[1]<3> INFO: #9 at (0.45136886471471577, 0.5775420535482041): 0.680784356 secs
[1]<1> INFO: #5 at (0.44829958984585055, 0.5242487702805364): 1.582285277 secs
[1]<4> INFO: #8 at (0.4503166846101742, 0.45373680806470607): 1.061058839 secs
[1]<2> INFO: #7 at (0.4492647749772267, 0.4423798925178572): 1.091019952 secs
[1]<3> INFO: #10 at (0.45290039617969957, 0.49788573493673904): 1.047883823 secs
[1]<4> INFO: #12 at (0.45300974978013053, 0.4720246853118094): 1.031456608 secs
[1]<1> INFO: #11 at (0.45268394527781725, 0.5746083765257792): 1.469275306 secs
[1]<3> INFO: #14 at (0.4544573194427255, 0.5518246926761439): 0.621873951 secs
[1]<4> INFO: #15 at (0.45460804740448923, 0.6221743293087605): 0.894849592 secs
[1]<1> INFO: #16 at (0.45493846037489766, 0.5803319273436115): 0.759192814 secs
[1]<3> INFO: #17 at (0.4557301789023031, 0.5363328118937297): 0.72557274 secs
[1]<4> INFO: #18 at (0.4563192950646906, 0.5646870829043183): 0.796648423 secs
[1]<2> INFO: #13 at (0.453419032522113, 0.5204745701675346): 2.720335353 secs
[1]<1> INFO: #19 at (0.4566602381764612, 0.4915101972294508): 0.648542478 secs
[1]<3> INFO: #20 at (0.45857838039802173, 0.5511032887347872): 1.430336712 secs
[1]<2> INFO: #22 at (0.46010305375727856, 0.4681589523635409): 0.942535014 secs
[1]<1> INFO: #23 at (0.46080675345106126, 0.4816147725129382): 0.912189503 secs
[1]<4> INFO: #21 at (0.4595176122699679, 0.6257015601237119): 1.195840054 secs
[1]<1> INFO: #26 at (0.46450876093347354, 0.6279034145322444): 0.412467704 secs
[1]<4> INFO: #27 at (0.4646799159265758, 0.6341898250888376): 1.00824544 secs
[1]<2> INFO: #25 at (0.46368600181230507, 0.44303505954976596): 1.292244533 secs
[1]<4> INFO: #29 at (0.46502031668251415, 0.48879800716432037): 0.674940883 secs
[1]<1> INFO: #28 at (0.4645953349341868, 0.5414392809535425): 1.471982732 secs
[1]<2> INFO: #30 at (0.4664216154436735, 0.4541055949086371): 0.803489372 secs
[1]<3> INFO: #24 at (0.4620685937828858, 0.52418720352906): 2.567581013 secs
[1]<2> INFO: #33 at (0.470658832843309, 0.609542317615005): 0.499611527 secs
[1]<4> INFO: #31 at (0.46771375276648436, 0.4346858376341241): 0.901204356 secs
[1]<1> INFO: #32 at (0.4677518521904763, 0.465683338807822): 1.390224214 secs
[1]<4> INFO: #36 at (0.47173029105195335, 0.43365512763211456): 0.640632633 secs
[1]<2> INFO: #35 at (0.47133528637450406, 0.41529579734788924): 1.65721131 secs
[1]<3> INFO: #34 at (0.4716008214785302, 0.5792865385901398): 1.740919644 secs
[1]<1> INFO: #37 at (0.4726037641019295, 0.5926100670785781): 1.391546006 secs
[1]<4> INFO: #38 at (0.4739847363741339, 0.6107692760154658): 1.392901108 secs
[1]<2> INFO: #39 at (0.4744125597995168, 0.5771235058818095): 0.804955358 secs
[1]<1> INFO: #41 at (0.47498029665673686, 0.4476476460569947): 0.584261003 secs
[1]<1> INFO: #44 at (0.47711035258867507, 0.42124609723110523): 1.001410314 secs
[1]<3> INFO: #40 at (0.47442928451183347, 0.5273780836810416): 3.254241886 secs
[1]<3> INFO: #46 at (0.4786216030509909, 0.6189950333421861): 1.156787722 secs
[1]<4> INFO: #42 at (0.4759425026275038, 0.5450525410664322): 3.864277918 secs
[1]<2> INFO: #43 at (0.4759581696367042, 0.6283480959297155): 3.706526997 secs
[1]<4> INFO: #48 at (0.4816714470662273, 0.42633984689606574): 0.68523399 secs
[1]<3> INFO: #47 at (0.48121472357779205, 0.4673047426422583): 0.878324358 secs
[1]<2> INFO: #49 at (0.4813771608806678, 0.41668190270142824): 0.840511011 secs
[1]<1> INFO: #45 at (0.47836861612518383, 0.528278632305205): 3.629919133 secs
[1]<2> INFO: #52 at (0.4826888491717617, 0.6267280581271264): 1.127906405 secs
[1]<1> INFO: #53 at (0.48393737083292643, 0.5546952199778716): 0.871398728 secs
[1]<2> INFO: #54 at (0.4845751627866951, 0.543586595653125): 0.797927992 secs
[1]<3> INFO: #51 at (0.4818836881394821, 0.49550519459550685): 2.879313779 secs
[1]<1> INFO: #55 at (0.48453113126650166, 0.5660630112174208): 1.643618463 secs
[1]<4> INFO: #50 at (0.48214206936180876, 0.522456595884244): 3.106534159 secs
[1]<2> INFO: #56 at (0.48496126421495106, 0.4406081853173498): 1.672717185 secs
[1]<1> INFO: #58 at (0.48704779741999116, 0.4412864681695091): 1.11703725 secs
[1]<3> INFO: #57 at (0.4856630476212734, 0.5146390203497494): 1.631917745 secs
[1]<1> INFO: #61 at (0.48945772453200076, 0.4623365358053783): 0.845072815 secs
[1]<2> INFO: #60 at (0.4881057571336386, 0.5320855957553735): 1.354775746 secs
[1]<3> INFO: #62 at (0.49069443806707636, 0.48208063524006256): 1.076920929 secs
[1]<1> INFO: #63 at (0.4911864537310975, 0.5567681532556036): 0.852767775 secs
[1]<4> INFO: #59 at (0.487460763193524, 0.5590180897580659): 2.990979193 secs
[1]<2> INFO: #64 at (0.49107517532895073, 0.5640329977148949): 0.974428515 secs
[1]<1> INFO: #66 at (0.4920227879589396, 0.5774783886009963): 0.724058679 secs
[1]<3> INFO: #65 at (0.49176675012497006, 0.511245462114061): 0.905599402 secs
[1]<2> INFO: #68 at (0.49270269332538763, 0.6095628454055134): 0.747584099 secs
[1]<4> INFO: #67 at (0.49217775167949973, 0.6075976413917243): 0.902081444 secs
[1]<3> INFO: #70 at (0.4935544948904462, 0.5295689022490156): 0.748896118 secs
[1]<4> INFO: #72 at (0.4941822542194482, 0.6083933725852398): 1.12174312 secs
[1]<3> INFO: #73 at (0.4948907159672443, 0.4964374994107554): 0.860957402 secs
[1]<1> INFO: #69 at (0.4926133485206151, 0.5307308118521182): 2.017897876 secs
[1]<4> INFO: #74 at (0.49484407541849557, 0.49841810293360395): 0.672739784 secs
[1]<3> INFO: #75 at (0.49499021432581675, 0.4443864189772359): 0.823888597 secs
[1]<4> INFO: #77 at (0.49522509180950197, 0.582188519362706): 1.051225501 secs
[1]<3> INFO: #78 at (0.4957034617410987, 0.5752266576235552): 0.741255688 secs
[1]<4> INFO: #79 at (0.49613873865371994, 0.5616819848816661): 0.59737257 secs
[1]<3> INFO: #80 at (0.4965545799961828, 0.5658887462048868): 2.273237294 secs
[1]<2> INFO: #71 at (0.49353795991795735, 0.4979771450147522): 5.506427117 secs
[1]<4> INFO: #81 at (0.4971574523659036, 0.5512153033827514): 1.937386947 secs
[1]<4> INFO: #84 at (0.49920328746354076, 0.5928176701489846): 0.868751435 secs
[1]<2> INFO: #83 at (0.49836062701175876, 0.47585625099977175): 0.934086552 secs
[1]<3> INFO: #82 at (0.4977679387474303, 0.48004761203809804): 1.183547063 secs
[1]<3> INFO: #87 at (0.5002107195336511, 0.4699490522476799): 0.718962108 secs
[1]<4> INFO: #85 at (0.4997829890972119, 0.4723947474096626): 0.915686404 secs
[1]<2> INFO: #86 at (0.5000806294282449, 0.41270754407906246): 0.905902897 secs
[1]<3> INFO: #88 at (0.5005338974637559, 0.5891182624490492): 0.764508693 secs
[1]<4> INFO: #89 at (0.5009176709804739, 0.5262801462738262): 0.629602748 secs
[1]<1> INFO: #76 at (0.4938099917237523, 0.6204518574093215): 6.414254079 secs
[1]<4> INFO: #92 at (0.5027490078079642, 0.49900320749266397): 0.511087135 secs
[1]<3> INFO: #91 at (0.5023105867400025, 0.593285106562613): 0.705004581 secs
[1]<1> INFO: #93 at (0.5035488878962461, 0.5132483830752812): 0.499015021 secs
[1]<2> INFO: #90 at (0.5021052848563274, 0.6218608467247222): 1.446169063 secs
[1]<3> INFO: #95 at (0.503449259606344, 0.6004165573599833): 0.959755553 secs
[1]<4> INFO: #94 at (0.5032752967826235, 0.5205360661300834): 1.167096727 secs
[1]<1> INFO: #96 at (0.5052237265884931, 0.6316884351807279): 1.181265318 secs
[1]<4> INFO: #99 at (0.5065712272828066, 0.4679403887461741): 0.660623733 secs
[1]<1> INFO: #100 at (0.5102437660009786, 0.5625849117699385): 0.578336227 secs
[1]<3> INFO: #98 at (0.5060682347192472, 0.43716427160686633): 1.042953368 secs
[1]<2> INFO: #97 at (0.5057416966835993, 0.5089402802242236): 2.222299926 secs
[1]<1> INFO: #102 at (0.5117471531017149, 0.5799190893102287): 0.85864653 secs
[1]<3> INFO: #103 at (0.5120688714433275, 0.5971203728364538): 0.67653592 secs
[1]<1> INFO: #105 at (0.5161458291346662, 0.4511308258948575): 0.765585744 secs
[1]<3> INFO: #106 at (0.5164569631430322, 0.5395576583320377): 0.855981245 secs
[1]<1> INFO: #107 at (0.5170191881224708, 0.43040834320326926): 2.204087888 secs
[1]<3> INFO: #108 at (0.5176129948890862, 0.6038183460226809): 2.345798644 secs
[1]<4> INFO: #101 at (0.5091826751037548, 0.5880854991659625): 4.459132739 secs
[1]<1> INFO: #109 at (0.5177485005577841, 0.5900264029475198): 0.902769856 secs
[1]<3> INFO: #110 at (0.5186055355174353, 0.5789946768064959): 0.896499393 secs
[1]<4> INFO: #111 at (0.5192579000574276, 0.4616523232893512): 0.88662036 secs
[1]<1> INFO: #112 at (0.5192038699032928, 0.5504091635467641): 0.598924809 secs
[1]<1> INFO: #115 at (0.5203748912021866, 0.6045536161184178): 0.552945834 secs
[1]<3> INFO: #113 at (0.5192941484729525, 0.5919665938222106): 1.098485563 secs
[1]<1> INFO: #116 at (0.5206406529134117, 0.5828175179378297): 0.513562586 secs
[1]<3> INFO: #117 at (0.5236854112582736, 0.486024120899365): 0.676200734 secs
[1]<4> INFO: #114 at (0.520062122760832, 0.5081788776097501): 2.756339599 secs
[1]<2> INFO: #104 at (0.5139029141840877, 0.6069673720734106): 8.175103059 secs
[1]<4> INFO: #120 at (0.526034153219541, 0.5409872207580633): 1.626736458 secs
[1]<2> INFO: #121 at (0.5263371207590225, 0.4500400594440777): 1.025709904 secs
[1]<3> INFO: #119 at (0.5231672351240705, 0.514629839245113): 3.041789471 secs
[1]<3> INFO: #124 at (0.5269964473909873, 0.4579613814048736): 0.587648872 secs
[1]<4> INFO: #122 at (0.5264040825779522, 0.5779516509613072): 0.818566805 secs
[1]<2> INFO: #123 at (0.5263378141242889, 0.48363121140446996): 0.945793933 secs
[1]<3> INFO: #125 at (0.527749003598129, 0.4373597287382472): 0.54864843 secs
[1]<4> INFO: #126 at (0.5287484714526386, 0.44226240321888455): 0.62969759 secs
[1]<2> INFO: #127 at (0.5286868033566963, 0.5229661340095592): 2.197391326 secs
[1]<3> INFO: #128 at (0.529781369242228, 0.5533612730324932): 2.427058046 secs
[1]<2> INFO: #130 at (0.5303977391707647, 0.6013601904096268): 0.748022446 secs
[1]<4> INFO: #129 at (0.529863963874052, 0.6217227162322603): 3.339760136 secs
[1]<2> INFO: #132 at (0.534666384962158, 0.585410644175441): 0.814879226 secs
[1]<3> INFO: #131 at (0.5303733744384623, 0.5029649282971188): 1.131378877 secs
[1]<2> INFO: #134 at (0.5355632460586862, 0.4223660966315628): 0.609742327 secs
[1]<4> INFO: #133 at (0.5350941795361615, 0.6017899535186393): 0.937405268 secs
[1]<3> INFO: #135 at (0.5354814598567142, 0.5713775024380419): 1.462415911 secs
[1]<4> INFO: #137 at (0.5359224947587135, 0.6273441602815427): 0.990522747 secs
[1]<3> INFO: #138 at (0.5363952486629356, 0.43954125423150303): 0.67534714 secs
[1]<4> INFO: #139 at (0.5361960899951693, 0.4875115217551921): 0.819594098 secs
[1]<2> INFO: #136 at (0.5355013523125101, 0.4480076810958921): 2.868284744 secs
[1]<4> INFO: #141 at (0.5392953659993904, 0.4161015936372472): 1.643616415 secs
[1]<2> INFO: #142 at (0.5389700973741822, 0.45103370341371835): 0.842015245 secs
[1]<3> INFO: #140 at (0.5366040113005083, 0.5685718714143986): 2.450743172 secs
[1]<4> INFO: #143 at (0.5402456406427691, 0.42086158251163586): 0.572955872 secs
[1]<4> INFO: #146 at (0.5412834280084066, 0.48106813479338445): 2.451256012 secs
[1]<2> INFO: #144 at (0.5400224839128844, 0.5876102281695398): 3.002509925 secs
[1]<2> INFO: #148 at (0.5431899905722788, 0.6192182416261975): 0.532781883 secs
[1]<4> INFO: #147 at (0.5412325383758216, 0.5333902332163603): 1.285932191 secs
[1]<2> INFO: #149 at (0.5435301493421892, 0.5029028040797956): 0.846901214 secs
[1]<4> INFO: #150 at (0.5444588183528439, 0.5346579928231046): 0.921494648 secs
[1]<3> INFO: #145 at (0.5403643802800667, 0.5514761834343669): 4.927913282 secs
[1]<2> INFO: #151 at (0.5443394098576441, 0.5510332865294776): 1.040361457 secs
[1]<4> INFO: #152 at (0.5451574493562406, 0.5044239981049174): 0.747308629 secs
[1]<3> INFO: #153 at (0.5453355753956023, 0.5577914816594768): 0.99727541 secs
[1]<2> INFO: #154 at (0.5457769836947288, 0.5519985596701557): 1.263012815 secs
[1]<4> INFO: #155 at (0.5475386920387619, 0.5790810416230074): 1.01098949 secs
[1]<3> INFO: #156 at (0.5487337119658291, 0.610994052618898): 0.918931363 secs
[1]<2> INFO: #157 at (0.5494377100545483, 0.44499212180125025): 0.542763104 secs
[1]<4> INFO: #158 at (0.5492443643617515, 0.5663332685160437): 0.833149712 secs
[1]<3> INFO: #159 at (0.5517184681663604, 0.4544091163768078): 0.743415449 secs
[1]<4> INFO: #161 at (0.5519242523453979, 0.5904334606762115): 0.781798668 secs
[1]<3> INFO: #162 at (0.5523341302259449, 0.5548747334643177): 0.775088521 secs
[1]<2> INFO: #160 at (0.5517505128849775, 0.5824173224679966): 1.405669986 secs
[1]<4> INFO: #163 at (0.5527657972944454, 0.56098439200494): 0.899351331 secs
[1]<3> INFO: #164 at (0.5529483065032846, 0.5825035999435205): 0.94559762 secs
[1]<2> INFO: #165 at (0.5550844840080685, 0.45467915786820406): 1.021694059 secs
[1]<4> INFO: #166 at (0.5554415906438086, 0.5284516721063385): 0.80035355 secs
[1]<3> INFO: #167 at (0.5558964074240251, 0.4245370790151002): 0.803672894 secs
[1]<2> INFO: #168 at (0.5560182818918445, 0.5360526106330564): 0.803638346 secs
[1]<4> INFO: #169 at (0.5568677549109293, 0.47863086270685645): 2.033019325 secs
[1]<3> INFO: #170 at (0.5569643841373522, 0.5080709303212085): 2.094163718 secs
[1]<4> INFO: #172 at (0.5594431317284627, 0.5650938380463247): 0.546825208 secs
[1]<2> INFO: #171 at (0.5585647131808802, 0.5083659239090198): 2.540614752 secs
[1]<3> INFO: #173 at (0.5598923845251368, 0.5899712737370703): 0.820067092 secs
[1]<4> INFO: #174 at (0.5600160551796028, 0.4720192184372023): 0.725766312 secs
[1]<3> INFO: #176 at (0.5602776999313314, 0.43111958901338326): 0.707825043 secs
[1]<2> INFO: #175 at (0.5600008634176149, 0.5889312321078869): 1.105552455 secs
[1]<4> INFO: #177 at (0.5606254941117709, 0.4989543969457138): 0.826256788 secs
[1]<2> INFO: #179 at (0.5614437258000123, 0.591075818306675): 0.620251749 secs
[1]<3> INFO: #178 at (0.5608862112056172, 0.5059829832536387): 0.94643698 secs
[1]<4> INFO: #180 at (0.5613103100065407, 0.5575429532815198): 1.097732135 secs
[1]<3> INFO: #182 at (0.5617830453160914, 0.5656050421592788): 0.610332205 secs
[1]<3> INFO: #184 at (0.5624965216641982, 0.5115945250992523): 0.548238235 secs
[1]<4> INFO: #183 at (0.5622361226495987, 0.47886320678338773): 0.717617111 secs
[1]<3> INFO: #185 at (0.5629219736818484, 0.5009360110991721): 0.89097734 secs
[1]<2> INFO: #181 at (0.5611612351365521, 0.5898193719212752): 2.553735364 secs
[1]<2> INFO: #188 at (0.5634461931942497, 0.5630263557780046): 0.870276216 secs
[1]<3> INFO: #187 at (0.5637353990763714, 0.5159168590410399): 1.387004232 secs
[1]<3> INFO: #190 at (0.5658948012684639, 0.48641758172817146): 0.54814202 secs
[1]<4> INFO: #186 at (0.5624739667657067, 0.5309744410972593): 3.318180278 secs
[1]<2> INFO: #189 at (0.5649006986449926, 0.4803610968966512): 2.87768499 secs
[1]<4> INFO: #192 at (0.5670247020266322, 0.5638533992232251): 2.223195958 secs
[1]<2> INFO: #193 at (0.568659886961275, 0.41845013289949934): 0.930914645 secs
[1]<2> INFO: #195 at (0.5707762857038323, 0.4871019175176111): 0.894113175 secs
[1]<1> INFO: #118 at (0.5209527552974642, 0.5302324341723076): 35.291372353 secs
[1]<2> INFO: #196 at (0.5706918580331528, 0.49857385383349173): 0.965340082 secs
[1]<1> INFO: #197 at (0.5727465635887656, 0.5183014866555539): 1.189005015 secs
[1]<2> INFO: #198 at (0.5729189030346525, 0.5354099561971506): 1.325240962 secs
[1]<1> INFO: #199 at (0.5728565405500765, 0.6114995801928416): 2.104005515 secs
[1]<2> INFO: #200 at (0.5734186417638953, 0.4377733923107232): 1.754882921 secs
[1]<1> INFO: #201 at (0.5742632138174324, 0.5245695996441853): 0.880728474 secs
[1]<2> INFO: #202 at (0.5758317632221853, 0.5686745054897501): 0.463952457 secs
[1]<1> INFO: #203 at (0.5760117111363527, 0.5305818970900784): 0.799713974 secs
[1]<2> INFO: #204 at (0.5767479838245627, 0.4412115066046345): 2.638232245 secs
[1]<3> INFO: #191 at (0.5645403777450811, 0.5539183979926394): 11.490353832 secs
[1]<1> INFO: #205 at (0.5762552155076789, 0.579142233408885): 2.643039936 secs
[1]<2> INFO: #206 at (0.5776187303312204, 0.4406038067516763): 0.82138484 secs
[1]<4> INFO: #194 at (0.5685799169086926, 0.5287563530532058): 9.146502547 secs
[1]<1> INFO: #208 at (0.5782372964839064, 0.6311276546095841): 0.927679231 secs
[1]<2> INFO: #209 at (0.5788055238729781, 0.4576320436477985): 0.6991697 secs
[1]<4> INFO: #210 at (0.5794402953351059, 0.5967736137456058): 0.797977586 secs
[1]<3> INFO: #207 at (0.5764911701980553, 0.44024999689320893): 1.537051369 secs
[1]<4> INFO: #213 at (0.5810344980710335, 0.57539157327875): 0.7293058 secs
[1]<1> INFO: #211 at (0.579858269709492, 0.6244259467805175): 1.157358918 secs
[1]<3> INFO: #214 at (0.5813854040441875, 0.4306989099279909): 0.653330956 secs
[1]<4> INFO: #215 at (0.5817510419343545, 0.6212961459105265): 0.671620837 secs
[1]<3> INFO: #217 at (0.5830144258959642, 0.627895412450295): 0.708380815 secs
[1]<2> INFO: #212 at (0.5801398633266535, 0.582048406866832): 2.131460217 secs
[1]<4> INFO: #218 at (0.5847175351695609, 0.6333599519826507): 1.064082751 secs
[1]<1> INFO: #216 at (0.5814476305270186, 0.450678404533775): 1.773150115 secs
[1]<2> INFO: #220 at (0.5858889789789846, 0.5347417332715789): 0.722514635 secs
[1]<1> INFO: #222 at (0.5866646076570542, 0.623852895361215): 0.481024385 secs
[1]<2> INFO: #223 at (0.5870049293130554, 0.5668072963318075): 0.532484422 secs
[1]<3> INFO: #219 at (0.5850533909587575, 0.5808892521747931): 1.798146598 secs
[1]<1> INFO: #224 at (0.587247810443455, 0.6271772301450493): 0.621745873 secs
[1]<3> INFO: #226 at (0.5885447533555334, 0.5040374913322783): 0.546356102 secs
[1]<2> INFO: #225 at (0.5883125577635862, 0.4393821859807627): 1.328948125 secs
[1]<4> INFO: #221 at (0.5854922995665419, 0.5685313210496693): 2.765430264 secs
[1]<1> INFO: #227 at (0.5887246657355651, 0.6330617944160268): 2.015620755 secs
[1]<2> INFO: #229 at (0.5919412811640903, 0.5360939389363368): 1.224829938 secs
[1]<2> INFO: #232 at (0.5933639768506906, 0.6046055306715931): 2.075952058 secs
[1]<3> INFO: #228 at (0.5885426683465885, 0.4326795350305959): 4.082005553 secs
[1]<4> INFO: #230 at (0.5922201413633025, 0.6169280939235121): 2.962717711 secs
[1]<2> INFO: #233 at (0.594342986921801, 0.5990155508128421): 0.674431153 secs
[1]<1> INFO: #231 at (0.5931531950147437, 0.4332619558709201): 2.777055921 secs
[1]<3> INFO: #234 at (0.5944495717778217, 0.41816392509284783): 0.619675537 secs
[1]<1> INFO: #237 at (0.5954588606622937, 0.5104190935575321): 0.892895846 secs
[1]<2> INFO: #236 at (0.59426879750507, 0.5232744878738254): 1.067040577 secs
[1]<3> INFO: #238 at (0.5965452182663207, 0.5355099963533659): 1.37476826 secs
[1]<2> INFO: #240 at (0.5979143145688325, 0.6107120924957882): 0.678632883 secs
[1]<4> INFO: #235 at (0.5942232569063022, 0.4913028077367806): 2.101408585 secs
[1]<4> INFO: #243 at (0.5988524843326153, 0.6267695008248797): 0.84114118 secs
[1]<1> INFO: #239 at (0.5974013878774781, 0.6250079256848229): 1.7072234 secs
[1]<2> INFO: #242 at (0.5987824395252328, 0.47351433939961385): 1.301914765 secs
[1]<4> INFO: #244 at (0.6012344550236198, 0.45635739545906784): 0.60395132 secs
[1]<1> INFO: #245 at (0.6013462357352009, 0.48052640809844405): 0.599380658 secs
[1]<1> INFO: #248 at (0.6052181025305493, 0.4978318205358722): 0.586536678 secs
[1]<4> INFO: #247 at (0.6051363236758234, 0.4613095668784439): 0.872905598 secs
[1]<2> INFO: #246 at (0.6039693923255707, 0.4682897865224047): 1.177104078 secs
[1]<1> INFO: #249 at (0.6054743560292092, 0.4973702020581069): 0.66874759 secs
[1]<2> INFO: #251 at (0.6054901137447584, 0.5612182488643426): 0.514757287 secs
[1]<4> INFO: #250 at (0.6056388216453499, 0.4822970416675706): 0.759817233 secs
[1]<1> INFO: #252 at (0.4423095423461063, 0.5268198623903395): 0.44716389 secs
[1]<2> INFO: #253 at (0.443105897286564, 0.5614584574743265): 0.646119878 secs
[1]<4> INFO: #254 at (0.4453661306016752, 0.5656059394178186): 1.059322393 secs
[1]<3> INFO: #241 at (0.5971672354446254, 0.49309199023612593): 4.567321064 secs
[1]<1> INFO: #255 at (0.44701091822804606, 0.4411911567600681): 1.213406653 secs
[1]<4> INFO: #257 at (0.45040865329805996, 0.5673418894959156): 1.949585414 secs
[1]<2> INFO: #256 at (0.44982727261407673, 0.5439594715134761): 2.885060111 secs
[1]<1> INFO: #259 at (0.4556916523183677, 0.44246847319826993): 2.188942559 secs
[1]<3> INFO: #258 at (0.45269249980794873, 0.6211195520988518): 2.275142161 secs
[1]<1> INFO: #262 at (0.4606954347977108, 0.4879687361368306): 0.531951952 secs
[1]<4> INFO: #260 at (0.455869159429999, 0.48595529251527686): 1.042508833 secs
[1]<2> INFO: #261 at (0.4567436608973064, 0.5924480078830108): 0.683470484 secs
[1]<3> INFO: #263 at (0.4611651444841585, 0.4533421562208898): 0.720596145 secs
[1]<1> INFO: #264 at (0.4613884440442084, 0.5537748171221339): 0.500701005 secs
[1]<4> INFO: #265 at (0.46428620852962477, 0.525634180515515): 0.688521124 secs
[1]<3> INFO: #267 at (0.4671829468647595, 0.48511788704428055): 0.511839677 secs
[1]<2> INFO: #266 at (0.4656909107611027, 0.4875711781005481): 0.67474279 secs
[1]<1> INFO: #268 at (0.4685747557113378, 0.49724526009364234): 0.764680256 secs
[1]<3> INFO: #270 at (0.47074953624117094, 0.4961142049245378): 0.872750041 secs
[1]<4> INFO: #269 at (0.46991873231896353, 0.4274718514732582): 0.905502034 secs
[1]<2> INFO: #271 at (0.47061408318490255, 0.592666334160981): 0.95927305 secs
[1]<1> INFO: #272 at (0.47351333247035265, 0.5550741322562195): 0.795625987 secs
[1]<3> INFO: #273 at (0.47370453868343465, 0.47789353134844686): 0.724514559 secs
[1]<4> INFO: #274 at (0.47496667953049204, 0.4817841322807658): 0.782205959 secs
[1]<2> INFO: #275 at (0.4771639607521994, 0.4719945207900426): 0.765011631 secs
[1]<1> INFO: #276 at (0.47829916596429767, 0.43041728360591675): 0.700840249 secs
[1]<4> INFO: #278 at (0.48248362361116204, 0.5358115447903009): 0.543950329 secs
[1]<3> INFO: #277 at (0.4823121562020878, 0.5847897130337862): 0.962927209 secs
[1]<1> INFO: #280 at (0.4829381954026811, 0.4720070910401811): 0.617524004 secs
[1]<2> INFO: #279 at (0.48235364856714835, 0.4801915272890163): 1.119015834 secs
[1]<4> INFO: #281 at (0.4839440185324632, 0.4470559619486026): 0.970446882 secs
[1]<1> INFO: #283 at (0.4885623043203127, 0.4523061618604147): 0.588524259 secs
[1]<3> INFO: #282 at (0.48552884440209443, 0.44472507804653777): 0.757486159 secs
[1]<2> INFO: #284 at (0.4885121497088167, 0.5297048334344077): 0.617823077 secs
[1]<1> INFO: #286 at (0.49143250936962596, 0.5733297642928306): 0.674464666 secs
[1]<4> INFO: #285 at (0.4902128424133766, 0.5887229194885434): 0.787373401 secs
[1]<3> INFO: #287 at (0.49193710605065644, 0.6281929184852223): 0.774444887 secs
[1]<2> INFO: #288 at (0.4926148273672029, 0.4525681471471922): 0.907890646 secs
[1]<1> INFO: #289 at (0.49756714927959494, 0.5851235691793508): 0.634365161 secs
[1]<4> INFO: #290 at (0.49819820944966825, 0.511209214702603): 0.605302666 secs
[1]<3> INFO: #291 at (0.4989829121528501, 0.5226038934669799): 0.805598458 secs
[1]<1> INFO: #293 at (0.5007893700341273, 0.4157043130004007): 0.534452837 secs
[1]<4> INFO: #294 at (0.5007084510063956, 0.5675824372940771): 0.58863671 secs
[1]<2> INFO: #292 at (0.49947762353337083, 0.6149250064065842): 0.900175004 secs
[1]<3> INFO: #295 at (0.5010405973578556, 0.5943442764297913): 0.795917265 secs
[1]<1> INFO: #296 at (0.5027255915901876, 0.6301541086065976): 0.717853684 secs
[1]<2> INFO: #298 at (0.5040670045319258, 0.5675299447679536): 0.514018406 secs
[1]<4> INFO: #297 at (0.5029097863142405, 0.4766836240727547): 0.850870163 secs
[1]<1> INFO: #300 at (0.509922862241737, 0.446195101714023): 1.795216503 secs
[1]<2> INFO: #301 at (0.5115527504416183, 0.5661145011462954): 1.821769829 secs
[1]<3> INFO: #299 at (0.5069098923718474, 0.47438584199459943): 2.082025044 secs
[1]<2> INFO: #304 at (0.5204886270592283, 0.48106896114765474): 0.523654158 secs
[1]<1> INFO: #303 at (0.5187662417534348, 0.45636618008711793): 0.978912033 secs
[1]<2> INFO: #306 at (0.5228260639622764, 0.5219148736581573): 0.456483158 secs
[1]<4> INFO: #302 at (0.514389591698603, 0.42448535820440575): 2.731579847 secs
[1]<3> INFO: #305 at (0.520471852291303, 0.4257109879359406): 1.104876119 secs
[1]<4> INFO: #309 at (0.5268603040883565, 0.47763373536076775): 0.511294576 secs
[1]<1> INFO: #307 at (0.5235508212968311, 0.5817992217843785): 0.741386386 secs
[1]<2> INFO: #308 at (0.5259980755683185, 0.5891542349718727): 0.736151659 secs
[1]<3> INFO: #310 at (0.5267418044585777, 0.6214262596003177): 0.603503023 secs
[1]<4> INFO: #311 at (0.5283845403890121, 0.4795789506325332): 0.606068863 secs
[1]<1> INFO: #312 at (0.5287819755171428, 0.4378913480833356): 0.649238413 secs
[1]<2> INFO: #313 at (0.5293347213173637, 0.4566011114845864): 0.834830725 secs
[1]<3> INFO: #314 at (0.5307507476419152, 0.584074617141872): 0.849367073 secs
[1]<4> INFO: #315 at (0.5312902028643566, 0.5320489143469179): 0.652399113 secs
[1]<1> INFO: #316 at (0.5332391618537515, 0.4705062368983663): 1.261308758 secs
[1]<3> INFO: #318 at (0.5342000737095735, 0.45533657100270697): 0.901191657 secs
[1]<2> INFO: #317 at (0.5340296325399748, 0.46435923616903585): 1.35108375 secs
[1]<4> INFO: #319 at (0.536352873344575, 0.4769674594574739): 1.179462333 secs
[1]<1> INFO: #320 at (0.5371650486582613, 0.6137700195430649): 0.62046729 secs
[1]<3> INFO: #321 at (0.5377363382556014, 0.5896250354607652): 0.748700067 secs
[1]<2> INFO: #322 at (0.5378200987752506, 0.5581315549187055): 0.820447297 secs
[1]<1> INFO: #324 at (0.5408209534798848, 0.547756798378415): 0.621483041 secs
[1]<3> INFO: #325 at (0.541608340881209, 0.6020864703524069): 0.637498508 secs
[1]<1> INFO: #327 at (0.5426259419459536, 0.4521896247207113): 0.681535109 secs
[1]<2> INFO: #326 at (0.5416908010003612, 0.5980171477950171): 0.866063668 secs
[1]<4> INFO: #323 at (0.5376930243090925, 0.518531651058625): 1.572418806 secs
[1]<3> INFO: #328 at (0.5422339440451238, 0.4659608802062063): 0.757250732 secs
[1]<3> INFO: #332 at (0.5509388042446351, 0.5780724916909722): 0.611164691 secs
[1]<4> INFO: #331 at (0.5476721084392501, 0.44656851592730284): 1.013446562 secs
[1]<3> INFO: #333 at (0.5531750530710721, 0.6077773028194687): 0.707682288 secs
[1]<2> INFO: #330 at (0.5451838364442712, 0.520204560359126): 3.208877375 secs
[1]<3> INFO: #335 at (0.555144609063674, 0.5508886461727209): 1.852680574 secs
[1]<4> INFO: #334 at (0.5539660441699541, 0.5544469597002516): 2.325955415 secs
[1]<3> INFO: #337 at (0.5565647109030358, 0.5232109087503114): 0.454622165 secs
[1]<2> INFO: #336 at (0.555969784884479, 0.5651274097721284): 0.803948459 secs
[1]<4> INFO: #338 at (0.5577116424221252, 0.48823993579144265): 0.815847337 secs
[1]<1> INFO: #329 at (0.5429640402006195, 0.4989597281722484): 4.424500388 secs
[1]<2> INFO: #340 at (0.5592223258039639, 0.5578590988515558): 0.605886987 secs
[1]<4> INFO: #341 at (0.5611117679154217, 0.45252677775809097): 0.597783297 secs
[1]<3> INFO: #339 at (0.5578653831397721, 0.43362990060929996): 1.078149542 secs
[1]<1> INFO: #342 at (0.5611987984489322, 0.5801854813439925): 0.799460857 secs
[1]<2> INFO: #343 at (0.5618906535908703, 0.5701593597552346): 0.70178336 secs
[1]<4> INFO: #344 at (0.5619770947291161, 0.4581405050305491): 0.697489972 secs
[1]<1> INFO: #346 at (0.5644022426512245, 0.5062126372473766): 0.677496786 secs
[1]<3> INFO: #345 at (0.5620217241540354, 0.4212726215472134): 0.979464305 secs
[1]<2> INFO: #347 at (0.565240989615806, 0.419215731912884): 0.679981118 secs
[1]<3> INFO: #350 at (0.5659460703375603, 0.5738745172158645): 0.638607125 secs
[1]<4> INFO: #348 at (0.5656355086512879, 0.5563040257430688): 1.08782555 secs
[1]<2> INFO: #351 at (0.5663614338934495, 0.5523449631756663): 0.934681321 secs
[1]<3> INFO: #352 at (0.5682942544233613, 0.5159865978685328): 0.717450316 secs
[1]<1> INFO: #349 at (0.5656232078043759, 0.5882546866262716): 1.66617875 secs
[1]<2> INFO: #354 at (0.5699624723316223, 0.5870921663682572): 0.931783263 secs
[1]<3> INFO: #355 at (0.5715335660809553, 0.5606910180240655): 0.729811073 secs
[1]<4> INFO: #353 at (0.5691695889251893, 0.6083758074625503): 1.362683432 secs
[1]<1> INFO: #356 at (0.5722890037431214, 0.46734149373245343): 0.560458579 secs
[1]<3> INFO: #358 at (0.5746156092612296, 0.5899912491085274): 0.544919986 secs
[1]<2> INFO: #357 at (0.5737417101098552, 0.6325926113914879): 0.632027473 secs
[1]<4> INFO: #359 at (0.5771486767293603, 0.5704920397849154): 0.730427342 secs
[1]<1> INFO: #360 at (0.5789507628586291, 0.4668196675789473): 0.853394368 secs
[1]<4> INFO: #363 at (0.5814893186625786, 0.5432709773566464): 0.416364968 secs
[1]<3> INFO: #361 at (0.5789280271960721, 0.505595865398221): 0.69192471 secs
[1]<2> INFO: #362 at (0.5794418881079089, 0.5106401906810685): 0.732599585 secs
[1]<4> INFO: #365 at (0.5828341155113083, 0.4419238708230226): 0.514604085 secs
[1]<2> INFO: #367 at (0.5841362075229523, 0.4345823028273926): 0.407775724 secs
[1]<1> INFO: #364 at (0.5817011838889775, 0.6227993213715602): 0.851625712 secs
[1]<3> INFO: #366 at (0.5836646997040125, 0.5455306763963068): 0.601655798 secs
[1]<4> INFO: #368 at (0.5839819291440875, 0.46106472940253873): 0.65449986 secs
[1]<3> INFO: #371 at (0.5883425029175811, 0.5557543488070057): 0.542419865 secs
[1]<2> INFO: #369 at (0.5850178790384393, 0.44009444649678087): 0.88915679 secs
[1]<3> INFO: #373 at (0.5935453745961647, 0.5684576728549551): 0.42454222 secs
[1]<1> INFO: #370 at (0.5868015683492552, 0.5940653066917864): 0.99362259 secs
[1]<4> INFO: #372 at (0.5911835406477342, 0.41424177764937004): 0.695047039 secs
[1]<3> INFO: #375 at (0.6024854974688486, 0.5768333290860564): 1.918354309 secs
[1]<2> INFO: #374 at (0.5966316689756519, 0.4434373783831539): 2.153706904 secs
[1]<4> INFO: #377 at (0.6039235425561132, 0.5903507158227658): 1.787218355 secs
[1]<1> INFO: #376 at (0.6035538612392857, 0.6111309606322378): 2.013068243 secs
[1]<3> INFO: #378 at (0.4555249733783021, 0.4704756374283682): 0.42116807 secs
[1]<2> INFO: #379 at (0.45657548086937755, 0.4846408936331555): 0.723090265 secs
[1]<1> INFO: #381 at (0.45807726443134056, 0.5801793066693243): 0.741343366 secs
[1]<3> INFO: #382 at (0.46179824250026996, 0.5342663925273042): 0.664003527 secs
[1]<4> INFO: #380 at (0.45749725733950136, 0.4145143260772501): 1.211018563 secs
[1]<1> INFO: #384 at (0.4682412031013453, 0.5000601306761281): 0.531674673 secs
[1]<2> INFO: #383 at (0.4675192540285605, 0.5566648484420395): 0.73536428 secs
[1]<4> INFO: #386 at (0.4732772910859841, 0.6226953757105365): 0.537152743 secs
[1]<3> INFO: #385 at (0.47223239045862986, 0.47254284423883086): 1.079963097 secs
[1]<1> INFO: #387 at (0.47634551391673047, 0.41969143078538207): 0.824743549 secs
[1]<2> INFO: #388 at (0.47659810755497983, 0.450833948305437): 0.858137852 secs
[1]<4> INFO: #389 at (0.47972284044532776, 0.5178261981748875): 0.579979649 secs
[1]<3> INFO: #390 at (0.48136899436228947, 0.6062481589006756): 0.39991538 secs
[1]<2> INFO: #392 at (0.49652195451049935, 0.6223001070702949): 0.638625826 secs
[1]<1> INFO: #391 at (0.49166745348365726, 0.4768483520540169): 0.802873352 secs
[1]<4> INFO: #393 at (0.49930522803712635, 0.489188944588325): 0.810687768 secs
[1]<3> INFO: #394 at (0.5011060726118928, 0.46421270227972067): 1.119572506 secs
[1]<1> INFO: #396 at (0.5026048399960179, 0.4826889188635381): 0.735582262 secs
[1]<2> INFO: #395 at (0.5011018196939961, 0.4621720423995987): 0.891786207 secs
[1]<4> INFO: #397 at (0.5091066076638828, 0.5481664304547058): 0.833523286 secs
[1]<3> INFO: #398 at (0.5094484774985096, 0.5992890291481968): 0.718121035 secs
[1]<1> INFO: #399 at (0.5098163252580176, 0.4896948209400179): 0.823489991 secs
[1]<2> INFO: #400 at (0.5125007790956787, 0.43862633777731613): 1.074599072 secs
[1]<4> INFO: #401 at (0.5191271035234363, 0.47739049829226493): 1.103935108 secs
[1]<1> INFO: #403 at (0.5223710408878081, 0.45989526206881215): 0.708237643 secs
[1]<4> INFO: #405 at (0.5265813163331348, 0.46618714194984784): 0.597285102 secs
[1]<2> INFO: #404 at (0.5249657652047424, 0.5111783353458791): 0.848143639 secs
[1]<1> INFO: #406 at (0.5325618002522085, 0.5162181608879203): 0.820550486 secs
[1]<2> INFO: #408 at (0.5400546526824063, 0.5141472578735632): 0.544915806 secs
[1]<4> INFO: #407 at (0.5381164318678126, 0.4697293499583203): 0.62453376 secs
[1]<3> INFO: #402 at (0.5198214975677355, 0.5302745518418461): 2.217029228 secs
[1]<1> INFO: #409 at (0.5486011157460204, 0.5260788633684104): 0.644640425 secs
[1]<2> INFO: #410 at (0.5494935608500804, 0.5147960390835287): 0.579886457 secs
[1]<4> INFO: #411 at (0.554452798298604, 0.5630193044585126): 0.715779236 secs
[1]<3> INFO: #412 at (0.5582980328629552, 0.4308262534666454): 0.542731293 secs
[1]<1> INFO: #413 at (0.5606663122660889, 0.4147691515134999): 0.479321788 secs
[1]<2> INFO: #414 at (0.5628767948444774, 0.5346672556550615): 1.70092644 secs
[1]<4> INFO: #415 at (0.5645310317293203, 0.4416277897913608): 1.867870827 secs
[1]<3> INFO: #416 at (0.5773764255445114, 0.5317630233951823): 1.840454645 secs
[1]<1> INFO: #417 at (0.5783204559228456, 0.4874275661711168): 1.829007409 secs
[1]<2> INFO: #418 at (0.5802003433615429, 0.5794162926428824): 0.615409774 secs
[1]<3> INFO: #420 at (0.5919073735774453, 0.5081100579477853): 0.738806619 secs
[1]<1> INFO: #421 at (0.5992222012413674, 0.46206820309009183): 0.824467889 secs
[1]<4> INFO: #419 at (0.5851206096861029, 0.4359198252270014): 1.004125115 secs
[1]<2> INFO: #422 at (0.5994152064223525, 0.56153427999747): 0.8527719 secs
[1]<1> INFO: #424 at (0.6025369740628534, 0.4491691902117206): 0.499841296 secs
[1]<4> INFO: #425 at (0.6033929233764522, 0.557823231655046): 0.624605601 secs
[1]<2> INFO: #426 at (0.6055279587502953, 0.5768681117062202): 0.663749769 secs
[1]<1> INFO: #427 at (0.6057673758656508, 0.47478396165045494): 0.463582134 secs
[1]<3> INFO: #423 at (0.6008280613979801, 0.5664929874188961): 1.12029989 secs
[1]<2> INFO: #429 at (0.4498426526904033, 0.5724236347069176): 0.754479104 secs
[1]<3> INFO: #431 at (0.48558677215002755, 0.4444197388239717): 0.804328384 secs
[1]<4> INFO: #428 at (0.4469645123607257, 0.45456572940892653): 1.074561431 secs
[1]<1> INFO: #430 at (0.4526446752342731, 0.5551412783474574): 1.055040439 secs
[1]<3> INFO: #433 at (0.4861436856172871, 0.580333218210685): 0.477062593 secs
[1]<2> INFO: #432 at (0.4855912839744141, 0.44500618105715856): 0.735649506 secs
[1]<4> INFO: #434 at (0.48679388476566654, 0.6017679638534106): 0.801940077 secs
[1]<1> INFO: #435 at (0.49265369411459964, 0.504553459866327): 0.79229725 secs
[1]<3> INFO: #436 at (0.49299267847553757, 0.5976905434159253): 0.597557061 secs
[1]<2> INFO: #437 at (0.5176652192332396, 0.5276274004363717): 0.929532659 secs
[1]<4> INFO: #438 at (0.5228718838981185, 0.5252651736997825): 0.745045568 secs
[1]<1> INFO: #439 at (0.5424777662827749, 0.4656823507739765): 0.894044634 secs
[1]<3> INFO: #440 at (0.546850615682155, 0.622090999630304): 0.952498352 secs
[1]<4> INFO: #442 at (0.579406718745933, 0.5375073917900709): 0.510919605 secs
[1]<2> INFO: #441 at (0.5580408184936707, 0.5420281065601074): 0.766134959 secs
[1]<1> INFO: #443 at (0.5916896065026969, 0.4461043152256761): 0.473720021 secs
[1]<2> INFO: #446 at (0.4677990475843795, 0.43405140276046617): 0.601115582 secs
[1]<4> INFO: #445 at (0.6030176383775012, 0.4866245312687809): 0.833858438 secs
[1]<3> INFO: #444 at (0.593967170018706, 0.5844317816780819): 0.92528601 secs
[1]<1> INFO: #447 at (0.4853451224076422, 0.4381514598101367): 0.760352261 secs
[1]<3> INFO: #450 at (0.5323009827820413, 0.569609259958374): 0.652486384 secs
[1]<2> INFO: #448 at (0.4936078737767985, 0.6201173587663692): 0.74580071 secs
[1]<4> INFO: #449 at (0.5222783774978053, 0.46019344402722134): 0.8364643 secs
[1]<1> INFO: #451 at (0.5622369273942432, 0.529872710635841): 0.69335704 secs
[1]<3> INFO: #452 at (0.5870173086274849, 0.6001485518612287): 0.516804946 secs
[1]<2> INFO: #453 at (0.5947604656617702, 0.5434746089464532): 0.873234779 secs
[1]<1> INFO: infer_box for Celeste.BoundingBox(-1000.0, 1000.0, -1000.0, 1000.0) took 167.766488851 seconds

ti profile:
prep: 2.789e-06 (2789)
fork: 7.112e-06 (75.5701 - 56.6776)
user: 163.751 (164.517 - 164.067)
join: 5e-07 (0.660964 - 0.165241)

5. Run MCMC on the image set

MCMC is parallelized differently (using pmap), which requires running an exterior script to schedule a set of jobs. For the MCMC SDSS Stripe2 experiment script to run, we need a few files to be saved (based on the synthetic catalog and the image pixels generated above). The following commands will reproduce our experiments

  1. Create ground truth files (repeats code above)

    $ cd Celeste.jl/benchmark/accuracy
    $ julia write_ground_truth_catalog_csv.jl prior
    $ julia generate_synthetic_field.jl prior_<hash>.csv

    which will create the following files in Celeste.jl/benchmark/accuracy/output:

    • prior_<hash>.csv : synthetic catalog drawn from the prior
    • prior_<hash>_synthetic_<hash>.jld : synthetic image of sources
  2. Run the AIS-MCMC code on each source

    $ cd Celeste.jl/experiments/mcmc_scripts
    $ ./run_synthetic_shards.sh

    which will schedule jobs for each set of sources and store samples in directory ais-output-synthetic.

  3. Score results

    julia score_mcmc_results.jl \
     --ais-output ais-output-synthetic \
     --output-dir synthetic-results \
     --truth-csv  ~/Proj/Celeste.jl/benchmark/accuracy/output/prior_<hash>.csv
     --vb-csv  ~/Proj/Celeste.jl/benchmark/accuracy/output/prior_<hash>_synthetic_<hash>_predictions_<hash>.csv

    which saves a bunch of csv files to experiments/mcmc_scripts/synthetic-results/ needed to reproduce plots (including the prediction score and uncertainty score dataframes that mirror the results below).

6. Score predictions


In [9]:
prediction_dfs = [celeste_catalog,]
scores = AccuracyBenchmark.score_predictions(prior_catalog, prediction_dfs)


Out[9]:
Nfirstfield
11240.0483871missed_stars
23050.0262295missed_galaxies
34290.107366position
44290.124774flux_r_mag
54290.349698flux_r_nmgy
6445.25679gal_angle_deg
7800.250228gal_frac_dev
8800.0991387gal_axis_ratio
9800.551287gal_radius_px
104290.372569color_ug
114290.136951color_gr
124290.115546color_ri
134290.163566color_iz

7. Score uncertainty


In [10]:
uncertainty_df = AccuracyBenchmark.get_uncertainty_df(prior_catalog, celeste_catalog)
scores = AccuracyBenchmark.score_uncertainty(uncertainty_df)


Out[10]:
fieldwithin_half_sdwithin_1_sdwithin_2_sdwithin_3_sd
1log_flux_r_nmgy0.158140.3162790.4976740.646512
2color_ug0.2651160.5023260.779070.9
3color_gr0.241860.4558140.7372090.853488
4color_ri0.220930.441860.6906980.830233
5color_iz0.3534880.5744190.8279070.927907

In [ ]:
scores_mc = CSV.read("mcmc_scripts/synthetic-results/uscore_mc.csv")