The composited color of the paint must not change during drying. The optical blending function is used with this constraint to compensate for the new dry layer $C_{d}^{\prime}$, when some volume $\delta_{\alpha}$ is removed from the wet layer.
$$ C_{d}^{\prime} = \frac{\alpha \times C_{w} + (1 - \delta) \times C_d - a^{\prime}C_w}{1 - \alpha^\prime}, \alpha^\prime = \alpha - \delta_\alpha $$The dry layer of the canvas uses a relative height field to allow for unlimited volume of paint to be added, with a constraint only on the relative change in height between texels.
In [1]:
from IPython.display import Markdown
Markdown(r"""# Non-Homogeneous Poisson Process Likelihood Function
$$
\frac{\left(Λ_{0,T}\left(t\right)\right)^k e^{\left(Λ_{0,T}\left(t\right)\right)}}{k!}
$$""")
Out[1]:
In [1]:
from IPython.display import Latex
display(Latex(r"\LaTeX"))
In [3]:
from IPython.display import Latex
Latex(r"""\begin{eqnarray}
\nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} & = & \frac{4\pi}{c}\vec{\mathbf{j}} \\
\nabla \cdot \vec{\mathbf{E}} & = & 4 \pi \rho \\
\nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} & = & \vec{\mathbf{0}} \\
\nabla \cdot \vec{\mathbf{B}} & = & 0
\end{eqnarray}""")
Out[3]:
https://github.com/nteract/nteract/issues/2434
$\hat{y}_{i}=\hat\beta_{0}+\hat\beta_{1}x_{i}$
$\sum\limits_{i=1}^nx_i$
https://github.com/nteract/nteract/issues/1557
| Age | Number of Cars owned | Owns House | Number of Children | Marital status (s/m/d/w) | Owns a dog | Bought a Boat |
|---|---|---|---|---|---|---|
| 66 | 1 | y | 2 | w | n | y |
| 52 | 2 | y | 3 | m | n | y |
| 22 | 0 | n | 0 | m | y | n |
| 25 | 1 | n | 1 | s | n | n |
| 44 | 0 | n | 2 | d | y | n |
| 39 | 1 | y | 2 | m | y | n |
| 26 | 1 | n | 2 | s | n | n |
| 40 | 3 | y | 1 | m | y | n |
| 53 | 2 | y | 2 | d | n | y |
| 64 | 2 | y | 3 | d | n | n |
| 58 | 2 | y | 2 | m | y | y |
| 33 | 1 | n | 1 | s | n | n |
hey
import this
print('hey')