In [ ]:
%matplotlib inline
In [ ]:
import chainladder as cl
import seaborn as sns
sns.set_style('whitegrid')
# Load triangle
triangle = cl.load_dataset('genins')
# Create 1000 bootstrap samples of the triangle
resampled_triangles = cl.BootstrapODPSample().fit_transform(triangle)
# Create 1000 IBNR estimates
sim_ibnr = cl.Chainladder().fit(resampled_triangles).ibnr_.sum('origin')
# X - mu
sim_ibnr = (sim_ibnr - sim_ibnr.mean()).to_frame().sort_values()
# Plot data
sim_ibnr.index = [item/1000 for item in range(1000)]
sim_ibnr.loc[0.90:].plot(
title='Bootstrap VaR (90% and above)', color='red').set(xlabel='VaR');