In [1]:
import numpy as np
from datascience import *
from pprint import pprint
In [2]:
ten = 3 * 2 + 4
ten
Out[2]:
You can also call the print
function:
In [3]:
print(ten)
In [4]:
# You can also make compound expressions
height = 1.3
the_number_five = abs(-5)
absolute_height_difference = abs(height - 1.688)
In [5]:
def to_percentage(proportion):
"""Converts a proportion to a percentage."""
factor = 100
return proportion * factor
to_percentage(0.19)
Out[5]:
One can access help and documentation info using Google-fu (i.e., using your favorite internet search engine) or built-in documentation. The cell below shows how to access a quick documentation browser withing a Jupyter notebook. Sometimes, however, the documentation is terse, and you may be better off doing an internet search.
In [6]:
to_percentage?
A snippet of text is represented by a string in Python.
You can create strings with single quotes ('
) and double quotes ("
) as delimiters.
Name | Example | Purpose |
---|---|---|
"" |
s = "some text" |
Create a string |
'' |
s = 'some text' |
Create a string |
+ |
s1 = 'some' s2 = 'text' s = s1 + ' ' + s2 |
Concatenate strings |
.replace |
'Hello'.replace('o', 'a') |
Replace all instances of a substring |
.lower |
'Hello'.lower() |
Return a lowercased version of the string |
.upper |
'hello'.upper() |
Return an uppercased version of the string |
.capitalize |
'unIvErSity of cOlOrAdo'.capitalize() |
Return a version with the first letter capitalized |
.title |
'unIvErSity of cOlOrAdo'.title() |
Return a version with the first letter of every word capitalized |
In [7]:
arr = make_array(0.125, 4.75, -1.3)
arr
Out[7]:
Index into the array with the .item
method:
In [8]:
arr.item(1)
Out[8]:
Apply arithmetic functions to arrays (provided by NumPy):
In [9]:
2 * (arr + 1.5)
Out[9]:
In [10]:
np.log10(make_array(1, 2, 10, 1000))
Out[10]:
In [11]:
np.sum(np.log10(make_array(1, 2, 10, 1000)))
Out[11]:
Name | Example | Purpose |
---|---|---|
Table |
Table() |
Create an empty table, usually to extend with data |
Table.read_table |
Table.read_table("my_data.csv") |
Create a table from a data file |
with_columns |
tbl = Table().with_columns("N", np.arange(5), "2*N", np.arange(0, 10, 2)) |
Create a copy of a table with more columns |
column |
tbl.column("N") |
Create an array containing the elements of a column |
sort |
tbl.sort("N") |
Create a copy of a table sorted by the values in a column |
where |
tbl.where("N", are.above(2)) |
Create a copy of a table with only the rows that match some predicate |
num_rows |
tbl.num_rows |
Compute the number of rows in a table |
num_columns |
tbl.num_columns |
Compute the number of columns in a table |
select |
tbl.select("N") |
Create a copy of a table with only some of the columns |
drop |
tbl.drop("2*N") |
Create a copy of a table without some of the columns |
take |
tbl.take(np.arange(0, 6, 2)) |
Create a copy of the table with only the rows whose indices are in the given array |
In [13]:
are?
In [ ]: