Project Euler Problem #8

The four adjacent digits in the 1000-digit number that have the greatest product are 9 × 9 × 8 × 9 = 5832.

73167176531330624919225119674426574742355349194934
96983520312774506326239578318016984801869478851843
85861560789112949495459501737958331952853208805511
12540698747158523863050715693290963295227443043557
66896648950445244523161731856403098711121722383113
62229893423380308135336276614282806444486645238749
30358907296290491560440772390713810515859307960866
70172427121883998797908792274921901699720888093776
65727333001053367881220235421809751254540594752243
52584907711670556013604839586446706324415722155397
53697817977846174064955149290862569321978468622482
83972241375657056057490261407972968652414535100474
82166370484403199890008895243450658541227588666881
16427171479924442928230863465674813919123162824586
17866458359124566529476545682848912883142607690042
24219022671055626321111109370544217506941658960408
07198403850962455444362981230987879927244284909188
84580156166097919133875499200524063689912560717606
05886116467109405077541002256983155200055935729725
71636269561882670428252483600823257530420752963450

Find the thirteen adjacent digits in the 1000-digit number that have the greatest product. What is the value of this product?


In [1]:
from __future__ import print_function

In [2]:
import string
import operator
from functools import reduce

In [3]:
s = '''
 73167176531330624919225119674426574742355349194934
 96983520312774506326239578318016984801869478851843
 85861560789112949495459501737958331952853208805511
 12540698747158523863050715693290963295227443043557
 66896648950445244523161731856403098711121722383113
 62229893423380308135336276614282806444486645238749
 30358907296290491560440772390713810515859307960866
 70172427121883998797908792274921901699720888093776
 65727333001053367881220235421809751254540594752243
 52584907711670556013604839586446706324415722155397
 53697817977846174064955149290862569321978468622482
 83972241375657056057490261407972968652414535100474
 82166370484403199890008895243450658541227588666881
 16427171479924442928230863465674813919123162824586
 17866458359124566529476545682848912883142607690042
 24219022671055626321111109370544217506941658960408
 07198403850962455444362981230987879927244284909188
 84580156166097919133875499200524063689912560717606
 05886116467109405077541002256983155200055935729725
 71636269561882670428252483600823257530420752963450
 '''
s = ''.join(c for c in s if c in string.digits)
len(str(s)), s


Out[3]:
(1000,
 '7316717653133062491922511967442657474235534919493496983520312774506326239578318016984801869478851843858615607891129494954595017379583319528532088055111254069874715852386305071569329096329522744304355766896648950445244523161731856403098711121722383113622298934233803081353362766142828064444866452387493035890729629049156044077239071381051585930796086670172427121883998797908792274921901699720888093776657273330010533678812202354218097512545405947522435258490771167055601360483958644670632441572215539753697817977846174064955149290862569321978468622482839722413756570560574902614079729686524145351004748216637048440319989000889524345065854122758866688116427171479924442928230863465674813919123162824586178664583591245665294765456828489128831426076900422421902267105562632111110937054421750694165896040807198403850962455444362981230987879927244284909188845801561660979191338754992005240636899125607176060588611646710940507754100225698315520005593572972571636269561882670428252483600823257530420752963450')

In [4]:
def foo(s, n):
    biggest_product = 0
    for i in range(len(s) - n + 1):
        t = s[i:i+n]
        product = reduce(operator.mul, map(int, t))
        if product > biggest_product:
            biggest_product = product
    return biggest_product

In [5]:
foo(s, 4)


Out[5]:
5832

In [6]:
n = 13
%timeit foo(s, n)
foo(s, n)


100 loops, best of 3: 5.77 ms per loop
Out[6]:
23514624000

In [7]:
def foo(s, n):
    adjacent_digits = (s[i:i+n] for i in range(len(s) - n + 1))
    products = (
        reduce(operator.mul, map(int, t))
        for t in adjacent_digits)
    return max(products)

In [8]:
n = 13
%timeit foo(s, n)
foo(s, n)


100 loops, best of 3: 5.97 ms per loop
Out[8]:
23514624000

In [9]:
def foo(s, n):
    return max(
        reduce(operator.mul, map(int, s[i:i+n]))
        for i in range(len(s) - n + 1))

In [10]:
n = 13
%timeit foo(s, n)
foo(s, n)


100 loops, best of 3: 6.05 ms per loop
Out[10]:
23514624000

It seems that having s as a big string and repeatedly converting digits to ints is wasteful, so I convert s to be a list of ints and repeat the above adjusted for dealing with a list of ints.


In [11]:
s = list(map(int, s))

In [12]:
def foo(s, n):
    biggest_product = 0
    for i in range(len(s) - n + 1):
        t = s[i:i+n]
        product = reduce(operator.mul, t)
        if product > biggest_product:
            biggest_product = product
    return biggest_product

In [13]:
foo(s, 4)


Out[13]:
5832

In [14]:
n = 13
%timeit foo(s, n)
foo(s, n)


1000 loops, best of 3: 1.84 ms per loop
Out[14]:
23514624000

In [15]:
def foo(s, n):
    adjacent_digits = (s[i:i+n] for i in range(len(s) - n + 1))
    products = (
        reduce(operator.mul, t)
        for t in adjacent_digits)
    return max(products)

In [16]:
n = 13
%timeit foo(s, n)
foo(s, n)


100 loops, best of 3: 2.02 ms per loop
Out[16]:
23514624000

In [17]:
def foo(s, n):
    return max(
        reduce(operator.mul, s[i:i+n])
        for i in range(len(s) - n + 1))

In [18]:
n = 13
%timeit foo(s, n)
foo(s, n)


1000 loops, best of 3: 1.88 ms per loop
Out[18]:
23514624000

Having s be a list of ints made the code faster and easier to read. That's a nice combination.

Below, I explore optimizing for speed.


In [19]:
# Keep a running product,
# so that one only needs to
# 1. divide out the digit that is "leaving"
# 2. multiply by the new digit.
#
# Handling zeroes makes the code complicated.

def foo(s, n):
    biggest_product = 0
    need_to_recalculate = True
    for i in range(len(s) - n + 1):
        t = s[i:i+n]
        if need_to_recalculate:
            product = reduce(operator.mul, t)
        else:
            product *= t[-1]
        if product > biggest_product:
            biggest_product = product
        if product == 0:
            need_to_recalculate = True
        else:
            product //=t[0]
    return biggest_product

In [20]:
n = 13
%timeit foo(s, n)
foo(s, n)


1000 loops, best of 3: 2.01 ms per loop
Out[20]:
23514624000

In [21]:
# When a zero digit is encountered,
# skip over the subsequences that would include it.

def foo(s, n):
    biggest_product = 0

    for i in range(len(s) - n + 1):
        if all(s[i:i+n]):
            break

    while i < len(s) - n + 1:
        if s[i+n-1] == 0:
            i += n
            continue

        product = reduce(operator.mul, s[i:i+n])
        if product > biggest_product:
            biggest_product = product
        i += 1

    return biggest_product

In [22]:
n = 13
%timeit foo(s, n)
foo(s, n)


1000 loops, best of 3: 1.02 ms per loop
Out[22]:
23514624000

In [23]:
# When a zero digit is encountered,
# skip over the subsequences that would include it.
#
# Avoid the special case code that frets over
# a zero in the initial subsequence.

def foo(s, n):
    biggest_product = 0

    i = 0
    while i < len(s) - n + 1:
        if s[i+n-1] == 0:
            i += n
            continue

        product = reduce(operator.mul, s[i:i+n])
        if product > biggest_product:
            biggest_product = product
        i += 1

    return biggest_product

In [24]:
n = 13
%timeit foo(s, n)
foo(s, n)


1000 loops, best of 3: 1.02 ms per loop
Out[24]:
23514624000

The while stuff is very un-Pythonic, but fast. Next I try using a more Pythonic iter(range(...)), but it is even uglier than the while stuff above.


In [25]:
def foo(s, n):
    biggest_product = 0

    iter_i = iter(range(len(s) - n + 1))
    for i in iter_i:
        if s[i+n-1] == 0:
            [next(iter_i) for _ in range(n-1)]
            continue

        product = reduce(operator.mul, s[i:i+n])
        if product > biggest_product:
            biggest_product = product

    return biggest_product

In [26]:
n = 13
%timeit foo(s, n)
foo(s, n)


1000 loops, best of 3: 1.06 ms per loop
Out[26]:
23514624000

In [27]:
# Put the repeated next(iter_i) in a for loop
# instead of a comprehension.
#
# I am surprised that it is faster.
# It it very ugly also, although probably a little bit clearer.

def foo(s, n):
    biggest_product = 0

    iter_i = iter(range(len(s) - n + 1))
    for i in iter_i:
        if s[i+n-1] == 0:
            # Skip over the subsequences that include this zero digit.
            # Want to do i += n.
            for _ in range(n-1):
                next(iter_i)
            continue

        product = reduce(operator.mul, s[i:i+n])
        if product > biggest_product:
            biggest_product = product

    return biggest_product

In [28]:
n = 13
%timeit foo(s, n)
foo(s, n)


1000 loops, best of 3: 1 ms per loop
Out[28]:
23514624000

For readability, I like cell #17 the best.

For speed, cells #23 and #27 are the fastest, but very ugly.