In [1]:
%matplotlib inline
%pylab inline


Populating the interactive namespace from numpy and matplotlib

Load training data


In [2]:
import menpo.io as mio
from menpo.landmark import labeller, streetscene_car_view_1
from menpofast.utils import convert_from_menpo

path = '/data/'
group = 'streetscene_car_view_1'

training_images = []
for i in mio.import_images(path + 'PhD/DataBases/cars/cmu_car_data1/view1',
                           verbose=True, max_images=None):
    
    # convert the image from menpo Image to menpofast Image (channels at front)
    i = convert_from_menpo(i)
    
    labeller(i, 'PTS', eval(group))
    i.crop_to_landmarks_proportion_inplace(0.5, group=group)
    i = i.rescale_landmarks_to_diagonal_range(200, group=group)
    
    if i.n_channels == 3:
        i = i.as_greyscale(mode='average')
    training_images.append(i)


- Loading 843 assets: [====================] 100%

In [11]:
training_images = training_images[::2]

In [6]:
from menpo.visualize import visualize_images

visualize_images(training_images)


Unified HDMs and PBDMs

Build


In [12]:
from menpofast.feature import no_op, fast_dsift
from alabortcvpr2015.unified import PartsUnifiedBuilder

unified = PartsUnifiedBuilder(parts_shape=(15, 15),
                              features=fast_dsift,
                              diagonal=50,
                              normalize_parts=False,
                              covariance=3,
                              scales=(1, .5),
                              max_shape_components=25,
                              max_appearance_components=500).build(training_images,
                                                                   group=group,
                                                                   verbose=True)


- Building models
  - Level 0: Done
  - Level 1: Done

In [13]:
from menpofast.image import Image

Image(unified.appearance_models[0].mean().pixels[0, 0]).view()


Out[13]:
<menpo.visualize.viewmatplotlib.MatplotlibImageSubplotsViewer2d at 0x7f249dce1a50>

In [14]:
unified.parts_filters()[0][0].view()


Out[14]:
<menpo.visualize.viewmatplotlib.MatplotlibImageSubplotsViewer2d at 0x7f249d996550>

Save


In [15]:
from alabortcvpr2015.utils import pickle_dump

pickle_dump(unified, path + 'PhD/Models/unified_view1_fast_dsift')

In [ ]: