This notebook was put together by [Jake Vanderplas](http://www.vanderplas.com) for PyData Seattle 2015. Source and license info is on [GitHub](https://github.com/jakevdp/sklearn_pydata2015/).
10:00 - 10:15 Preliminaries: Setup & introduction
10:15 - 11:00 Basic Principles of Machine Learning and the Scikit-learn Interface
11:00 - 12:00 Supervised learning in-depth
The tutorial repository contains additional material which we will not cover here. My hope is that you will find it useful to read-through on your own if you want to go deeper!
This tutorial requires the following packages:
numpy
version 1.5 or later: http://www.numpy.org/scipy
version 0.10 or later: http://www.scipy.org/matplotlib
version 1.3 or later: http://matplotlib.org/scikit-learn
version 0.14 or later: http://scikit-learn.orgipython
version 2.0 or later, with notebook support: http://ipython.orgseaborn
: version 0.5 or later, used mainly for plot stylingThe easiest way to get these is to use the conda environment manager. I suggest downloading and installing miniconda.
The following command will install all required packages:
$ conda install numpy scipy matplotlib scikit-learn ipython-notebook
Alternatively, you can download and install the (very large) Anaconda software distribution, found at https://store.continuum.io/.
In [1]:
from __future__ import print_function
import IPython
print('IPython:', IPython.__version__)
import numpy
print('numpy:', numpy.__version__)
import scipy
print('scipy:', scipy.__version__)
import matplotlib
print('matplotlib:', matplotlib.__version__)
import sklearn
print('scikit-learn:', sklearn.__version__)
import seaborn
print('seaborn', seaborn.__version__)