Bokeh is an open-sourced interactive web visualization library for Python (and other languages). It provides d3-like novel graphics, over large datasets, all without requiring any knowledge of Javascript.
It has a Matplotlib compatibility layer, and it works great with the IPython Notebook, but can also be used to generate standalone HTML.
In [1]:
%run talktools
In [2]:
from bokeh.plotting import *
output_notebook()
import numpy as np
In [3]:
x = np.linspace(-6, 6, 100)
y = np.cos(x)
circle(x, y, color="red", plot_width=500, plot_height=500)
show()
In [4]:
from bokeh.sampledata.autompg import autompg
grouped = autompg.groupby("yr")
mpg = grouped["mpg"]
avg = mpg.mean()
std = mpg.std()
years = np.asarray(grouped.groups.keys())
american = autompg[autompg["origin"]==1]
japanese = autompg[autompg["origin"]==3]
For each year, we want to plot the distribution of MPG within that year.
In [5]:
hold(True)
figure()
quad(left=years-0.4, right=years+0.4, bottom=avg-std, top=avg+std,
fill_alpha=0.4)
circle(x=np.asarray(japanese["yr"]), y=np.asarray(japanese["mpg"]),
size=8,
alpha=0.4, line_color="red", fill_color=None, line_width=2)
triangle(x=np.asarray(american["yr"]), y=np.asarray(american["mpg"]),
size=8, alpha=0.4, line_color="blue", fill_color=None,
line_width=2)
hold(False)
show()
This kind of approach can be used to generate other kinds of interesting plots, like some of the following which are available on the Bokeh web page.
(Click on any of the thumbnails to open the interactive version.)
There's a nice, comprehensive tutorial with exercises at: http://bokeh.pydata.org/tutorial/index.html
For the full documentation & live examples: http://bokeh.pydata.org
GitHub: https://github.com/ContinuumIO/bokeh