In [1]:
%pylab inline
rc('text', usetex=True)
rc('axes', labelsize=15, titlesize=15)


Populating the interactive namespace from numpy and matplotlib

In [2]:
import seaborn as sns
sns.set_style("white")
np.random.seed(10)

ABC PMC on a 2D gaussian example

In this example we're looking at a dataset that has been drawn from a 2D gaussian distribution. We're going to assume that we don't have a proper likelihood but that we know the covariance matrix $\Sigma$ of the distribution. Using the ABC PMC algorithm we will approximate the posterior of the distribtion of the mean values.

First we generate a new dataset by drawing random variables from a mulitvariate gaussian around mean=[1.1, 1.5]. This is going to be our observed data set


In [3]:
samples_size = 1000
sigma = np.eye(2) * 0.25
means = [1.1, 1.5]

data = np.random.multivariate_normal(means, sigma, samples_size)
matshow(sigma)
title("covariance matrix sigma")
colorbar()


Out[3]:
<matplotlib.colorbar.Colorbar instance at 0x10c542950>
/Users/jakeret/Library/Python/2.7/lib/python/site-packages/matplotlib/collections.py:590: FutureWarning: elementwise comparison failed; returning scalar instead, but in the future will perform elementwise comparison
  if self._edgecolors == str('face'):

Then we need to define our model/simulation. In this case this is simple: we draw again random variables from a multivariate gaussian distribution using the given mean and the sigma from above


In [4]:
def create_new_sample(theta):
    return np.random.multivariate_normal(theta, sigma, samples_size)

Next, we need to define a distance measure. We will use the sum of the absolute differences of the means of the simulated and the observed data


In [5]:
def dist_measure(x, y):
    return np.sum(np.abs(np.mean(x, axis=0) - np.mean(y, axis=0)))

Verification

To verify if everything works and to see the effect of the random samples in the simulation we compute the distance for 1000 simulations at the true mean values


In [6]:
distances = [dist_measure(data, create_new_sample(means)) for _ in range(1000)]

In [7]:
sns.distplot(distances, axlabel="distances", )
title("Variablility of distance from simulations")


Out[7]:
<matplotlib.text.Text at 0x10c7317d0>

Setup

Now we're going to set up the ABC PMC sampling


In [8]:
import abcpmc

As a prior we're going to use a gaussian prior using our best guess about the distribution of the means.


In [9]:
prior = abcpmc.GaussianPrior(mu=[1.0, 1.0], sigma=np.eye(2) * 0.5)

As threshold $\epsilon$ we're going to use the $\alpha^{th}$ percentile of the sorted distances of the particles of the current iteration. The simplest way to do this is to define a constant $\epsilon$ and iteratively adapt the theshold. As starting value we're going to define a sufficiently high value so that the acceptance ratio is reasonable and we will sample for T iterations


In [10]:
alpha = 75
T = 20
eps_start = 1.0
eps = abcpmc.ConstEps(T, eps_start)

Finally, we create an instance of your sampler. We want to use 5000 particles and the functions we defined above. Additionally we're going to make use of the built-in parallelization and use 7 cores for the sampling


In [11]:
sampler = abcpmc.Sampler(N=5000, Y=data, postfn=create_new_sample, dist=dist_measure, threads=7)

Optionally, we can customize the proposal creation. Here we're going to use a "Optimal Local Covariance Matrix"-kernel (OLCM) as proposed by (Fillipi et al. 2012). This has shown to yield a high acceptance ratio togheter with a faster decrease of the thresold.


In [12]:
sampler.particle_proposal_cls = abcpmc.OLCMParticleProposal

Sampling

Now we're ready to sample. All we need to do is to iterate over the yielded values of your sampler instance. The sample function returns a namedtuple per iteration that contains all the information that we're interestend in


In [13]:
def launch():
    eps = abcpmc.ConstEps(T, eps_start)

    pools = []
    for pool in sampler.sample(prior, eps):
        print("T: {0}, eps: {1:>.4f}, ratio: {2:>.4f}".format(pool.t, eps(pool.eps), pool.ratio))

        for i, (mean, std) in enumerate(zip(*abcpmc.weighted_avg_and_std(pool.thetas, pool.ws, axis=0))):
            print(u"    theta[{0}]: {1:>.4f} \u00B1 {2:>.4f}".format(i, mean,std))

        eps.eps = np.percentile(pool.dists, alpha) # reduce eps value
        pools.append(pool)
    sampler.close()
    return pools

In [14]:
import time
t0 = time.time()
pools = launch()
print "took", (time.time() - t0)


T: 0, eps: 1.0000, ratio: 0.3907
    theta[0]: 1.0648 ± 0.3761
    theta[1]: 1.3485 ± 0.3746
T: 1, eps: 0.8351, ratio: 0.5106
    theta[0]: 1.0694 ± 0.2965
    theta[1]: 1.3742 ± 0.2963
T: 2, eps: 0.6666, ratio: 0.5363
    theta[0]: 1.0802 ± 0.2421
    theta[1]: 1.4044 ± 0.2410
T: 3, eps: 0.5282, ratio: 0.5230
    theta[0]: 1.0808 ± 0.1926
    theta[1]: 1.4349 ± 0.1924
T: 4, eps: 0.4158, ratio: 0.5268
    theta[0]: 1.0863 ± 0.1570
    theta[1]: 1.4595 ± 0.1524
T: 5, eps: 0.3299, ratio: 0.5270
    theta[0]: 1.0855 ± 0.1257
    theta[1]: 1.4696 ± 0.1248
T: 6, eps: 0.2624, ratio: 0.4958
    theta[0]: 1.0926 ± 0.0993
    theta[1]: 1.4822 ± 0.0999
T: 7, eps: 0.2085, ratio: 0.5031
    theta[0]: 1.0904 ± 0.0780
    theta[1]: 1.4843 ± 0.0805
T: 8, eps: 0.1663, ratio: 0.5006
    theta[0]: 1.0906 ± 0.0633
    theta[1]: 1.4885 ± 0.0652
T: 9, eps: 0.1322, ratio: 0.4851
    theta[0]: 1.0905 ± 0.0520
    theta[1]: 1.4903 ± 0.0516
T: 10, eps: 0.1062, ratio: 0.4743
    theta[0]: 1.0919 ± 0.0430
    theta[1]: 1.4917 ± 0.0417
T: 11, eps: 0.0846, ratio: 0.4652
    theta[0]: 1.0915 ± 0.0346
    theta[1]: 1.4931 ± 0.0347
T: 12, eps: 0.0683, ratio: 0.4381
    theta[0]: 1.0920 ± 0.0286
    theta[1]: 1.4931 ± 0.0290
T: 13, eps: 0.0563, ratio: 0.4155
    theta[0]: 1.0923 ± 0.0250
    theta[1]: 1.4943 ± 0.0254
T: 14, eps: 0.0463, ratio: 0.3605
    theta[0]: 1.0920 ± 0.0224
    theta[1]: 1.4944 ± 0.0219
T: 15, eps: 0.0386, ratio: 0.3187
    theta[0]: 1.0924 ± 0.0200
    theta[1]: 1.4945 ± 0.0193
T: 16, eps: 0.0319, ratio: 0.2739
    theta[0]: 1.0919 ± 0.0181
    theta[1]: 1.4948 ± 0.0179
T: 17, eps: 0.0271, ratio: 0.2259
    theta[0]: 1.0917 ± 0.0174
    theta[1]: 1.4946 ± 0.0166
T: 18, eps: 0.0231, ratio: 0.1805
    theta[0]: 1.0917 ± 0.0164
    theta[1]: 1.4948 ± 0.0159
T: 19, eps: 0.0197, ratio: 0.1425
    theta[0]: 1.0922 ± 0.0157
    theta[1]: 1.4949 ± 0.0158
took 149.579810143

Postprocessing

How did the sampled values evolve over the iterations? As the threshold is decreasing we expect the errors to shrink while the means converge to the true means.


In [15]:
for i in range(len(means)):
    moments = np.array([abcpmc.weighted_avg_and_std(pool.thetas[:,i], pool.ws, axis=0) for pool in pools])
    errorbar(range(T), moments[:, 0], moments[:, 1])
hlines(means, 0, T, linestyle="dotted", linewidth=0.7)
_ = xlim([-.5, T])


How does the distribution of the distances look like after we have approximated the posterior? If we're close to the true posterior we expect to have a high bin count around the values we've found in the earlier distribution plot


In [16]:
distances = np.array([pool.dists for pool in pools]).flatten()
sns.distplot(distances, axlabel="distance")


Out[16]:
<matplotlib.axes._subplots.AxesSubplot at 0x10c5682d0>

How did our $\epsilon$ values behave over the iterations? Using the $\alpha^{th}$ percentile causes the threshold to decrease relatively fast in the beginning and to plateau later on


In [17]:
eps_values = np.array([pool.eps for pool in pools])
plot(eps_values, label=r"$\epsilon$ values")
xlabel("Iteration")
ylabel(r"$\epsilon$")
legend(loc="best")


Out[17]:
<matplotlib.legend.Legend at 0x10d769110>

What about the acceptance ratio? ABC PMC with the OLCM kernel gives us a relatively high acceptance ratio.


In [18]:
acc_ratios = np.array([pool.ratio for pool in pools])
plot(acc_ratios, label="Acceptance ratio")
ylim([0, 1])
xlabel("Iteration")
ylabel("Acceptance ratio")
legend(loc="best")


Out[18]:
<matplotlib.legend.Legend at 0x10cc2e210>

In [19]:
%pylab inline
rc('text', usetex=True)
rc('axes', labelsize=15, titlesize=15)


Populating the interactive namespace from numpy and matplotlib

Finally what does our posterior look like? For the visualization we're using triangle.py (https://github.com/dfm/triangle.py)


In [20]:
import triangle
samples = np.vstack([pool.thetas for pool in pools])
fig = triangle.corner(samples, truths= means)


/Users/jakeret/Library/Python/2.7/lib/python/site-packages/matplotlib/collections.py:650: FutureWarning: elementwise comparison failed; returning scalar instead, but in the future will perform elementwise comparison
  if self._edgecolors_original != str('face'):

Omitting the first couple of iterations..


In [21]:
idx = -1
samples = pools[idx].thetas
fig = triangle.corner(samples, weights=pools[idx].ws, truths= means)

for mean, std in zip(*abcpmc.weighted_avg_and_std(samples, pools[idx].ws, axis=0)):
    print(u"mean: {0:>.4f} \u00B1 {1:>.4f}".format(mean,std))


mean: 1.0922 ± 0.0157
mean: 1.4949 ± 0.0158

In [ ]: