*************************************************************************
| y10
| Selected Facility Locations -------------- ^^^^
| Candidate Facilities [p] ----------------- 1
| Objective Value (miles) ------------------ 252.628622209
| Avg. Value / Client (miles) -------------- 1.01866379923
| Real Time to Optimize (sec.) ------------- 0.236118793488
*************************************************************************
-- The p-Median Problem --
[p] = 1
Optimize a model with 1701 rows, 1516 columns and 6115 nonzeros
Coefficient statistics:
Matrix range [2e-03, 3e+00]
Objective range [1e+00, 1e+00]
Bounds range [1e+00, 1e+00]
RHS range [1e+00, 1e+00]
Presolve removed 1600 rows and 1500 columns
Presolve time: 0.13s
Presolved: 101 rows, 16 columns, 1515 nonzeros
Variable types: 1 continuous, 15 integer (15 binary)
Found heuristic solution: objective 2.8439770
Found heuristic solution: objective 2.6194347
Found heuristic solution: objective 2.2724425
Presolve removed 9 rows and 9 columns
Presolved: 7 rows, 108 columns, 657 nonzeros
Presolve removed 7 rows and 108 columns
Root relaxation: objective 1.619386e+00, 6 iterations, 0.00 seconds
Nodes | Current Node | Objective Bounds | Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time
0 0 1.61939 0 4 2.27244 1.61939 28.7% - 0s
H 0 0 1.7981720 1.61939 9.94% - 0s
0 0 cutoff 0 1.79817 1.79817 0.00% - 0s
Explored 0 nodes (8 simplex iterations) in 0.16 seconds
Thread count was 4 (of 4 available processors)
Optimal solution found (tolerance 1.00e-04)
Best objective 1.798172038792e+00, best bound 1.798172038792e+00, gap 0.0%
*************************************************************************
| y10
| Selected Facility Locations -------------- ^^^^
| Candidate Facilities [p] ----------------- 1
| Objective Value (miles) ------------------ 1.79817203879
| Real Time to Optimize (sec.) ------------- 0.290205001831
*************************************************************************
-- The p-Center Problem --
[p] = 1
Optimize a model with 1701 rows, 1516 columns and 6115 nonzeros
Coefficient statistics:
Matrix range [2e-03, 3e+00]
Objective range [1e-05, 5e-01]
Bounds range [1e+00, 1e+00]
RHS range [1e+00, 1e+00]
Presolve removed 1600 rows and 1500 columns
Presolve time: 0.13s
Presolved: 101 rows, 16 columns, 1615 nonzeros
Variable types: 1 continuous, 15 integer (15 binary)
Found heuristic solution: objective 1.6074385
Presolve removed 1 rows and 100 columns
Presolved: 15 rows, 17 columns, 45 nonzeros
Root relaxation: objective 1.408418e+00, 1 iterations, 0.00 seconds
Nodes | Current Node | Objective Bounds | Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time
* 0 0 0 1.4084179 1.40842 0.00% - 0s
Explored 0 nodes (1 simplex iterations) in 0.14 seconds
Thread count was 4 (of 4 available processors)
Optimal solution found (tolerance 1.00e-04)
Best objective 1.408417919012e+00, best bound 1.408417919012e+00, gap 0.0%
*************************************************************************
| y10
| Selected Facility Locations -------------- ^^^^
| Candidate Facilities [p] ----------------- 1
| Objective Value (miles) ------------------ 1.40841791901
| Real Time to Optimize (sec.) ------------- 0.295914888382
*************************************************************************
-- The p-CentDian Problem --
[p] = 1
*************************************************************************
| y12
| y15
| Selected Facility Locations -------------- ^^^^
| Candidate Facilities [p] ----------------- 2
| Objective Value (miles) ------------------ 178.435962925
| Avg. Value / Client (miles) -------------- 0.719499850505
| Real Time to Optimize (sec.) ------------- 0.121235847473
*************************************************************************
-- The p-Median Problem --
[p] = 2
Optimize a model with 1701 rows, 1516 columns and 6115 nonzeros
Coefficient statistics:
Matrix range [2e-03, 3e+00]
Objective range [1e+00, 1e+00]
Bounds range [1e+00, 1e+00]
RHS range [1e+00, 2e+00]
Presolve time: 0.01s
Presolved: 1701 rows, 1516 columns, 6015 nonzeros
Variable types: 1 continuous, 1515 integer (1515 binary)
Found heuristic solution: objective 1.9504745
Found heuristic solution: objective 1.9092634
Found heuristic solution: objective 1.8309455
Root relaxation: objective 1.091514e+00, 1348 iterations, 0.03 seconds
Nodes | Current Node | Objective Bounds | Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time
0 0 1.09151 0 409 1.83095 1.09151 40.4% - 0s
H 0 0 1.5822633 1.09151 31.0% - 0s
H 0 0 1.4568885 1.09151 25.1% - 0s
0 0 cutoff 0 1.45689 1.45689 0.00% - 0s
Cutting planes:
Gomory: 1
MIR: 6
Zero half: 4
Explored 0 nodes (3729 simplex iterations) in 0.23 seconds
Thread count was 4 (of 4 available processors)
Optimal solution found (tolerance 1.00e-04)
Best objective 1.456888501112e+00, best bound 1.456888501112e+00, gap 0.0%
*************************************************************************
| y4
| y7
| Selected Facility Locations -------------- ^^^^
| Candidate Facilities [p] ----------------- 2
| Objective Value (miles) ------------------ 1.45688850111
| Real Time to Optimize (sec.) ------------- 0.332101106644
*************************************************************************
-- The p-Center Problem --
[p] = 2
Optimize a model with 1701 rows, 1516 columns and 6115 nonzeros
Coefficient statistics:
Matrix range [2e-03, 3e+00]
Objective range [1e-05, 5e-01]
Bounds range [1e+00, 1e+00]
RHS range [1e+00, 2e+00]
Presolve time: 0.02s
Presolved: 1701 rows, 1516 columns, 6015 nonzeros
Variable types: 1 continuous, 1515 integer (1515 binary)
Found heuristic solution: objective 1.3653839
Root relaxation: objective 9.384803e-01, 959 iterations, 0.02 seconds
Nodes | Current Node | Objective Bounds | Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time
0 0 0.93848 0 313 1.36538 0.93848 31.3% - 0s
H 0 0 1.3108682 0.93848 28.4% - 0s
H 0 0 1.1642570 0.93848 19.4% - 0s
0 0 0.98114 0 356 1.16426 0.98114 15.7% - 0s
0 0 0.98266 0 379 1.16426 0.98266 15.6% - 0s
0 0 1.00716 0 462 1.16426 1.00716 13.5% - 0s
0 0 1.00822 0 472 1.16426 1.00822 13.4% - 0s
0 0 1.00925 0 519 1.16426 1.00925 13.3% - 0s
0 0 1.00955 0 460 1.16426 1.00955 13.3% - 0s
0 0 1.01074 0 423 1.16426 1.01074 13.2% - 0s
0 0 1.01100 0 493 1.16426 1.01100 13.2% - 0s
0 0 1.01201 0 492 1.16426 1.01201 13.1% - 0s
0 0 1.01202 0 493 1.16426 1.01202 13.1% - 0s
0 0 1.01223 0 468 1.16426 1.01223 13.1% - 0s
0 0 1.01289 0 452 1.16426 1.01289 13.0% - 0s
0 0 1.01313 0 499 1.16426 1.01313 13.0% - 0s
0 0 1.01316 0 514 1.16426 1.01316 13.0% - 0s
0 0 1.01337 0 508 1.16426 1.01337 13.0% - 0s
0 0 1.01339 0 507 1.16426 1.01339 13.0% - 0s
0 0 1.01374 0 490 1.16426 1.01374 12.9% - 0s
H 0 0 1.1104573 1.01374 8.71% - 0s
0 0 1.01419 0 523 1.11046 1.01419 8.67% - 0s
0 0 1.01450 0 492 1.11046 1.01450 8.64% - 0s
0 0 1.01455 0 509 1.11046 1.01455 8.64% - 0s
0 0 1.01466 0 493 1.11046 1.01466 8.63% - 0s
0 0 1.01466 0 494 1.11046 1.01466 8.63% - 0s
0 0 1.01466 0 494 1.11046 1.01466 8.63% - 0s
0 2 1.01466 0 494 1.11046 1.01466 8.63% - 0s
Cutting planes:
Gomory: 3
MIR: 5
Zero half: 8
Explored 32 nodes (3159 simplex iterations) in 0.88 seconds
Thread count was 4 (of 4 available processors)
Optimal solution found (tolerance 1.00e-04)
Best objective 1.110457339150e+00, best bound 1.110457339150e+00, gap 0.0%
*************************************************************************
| y7
| y15
| Selected Facility Locations -------------- ^^^^
| Candidate Facilities [p] ----------------- 2
| Objective Value (miles) ------------------ 1.11045733915
| Real Time to Optimize (sec.) ------------- 1.10769510269
*************************************************************************
-- The p-CentDian Problem --
[p] = 2
*************************************************************************
| y6
| y9
| y15
| Selected Facility Locations -------------- ^^^^
| Candidate Facilities [p] ----------------- 3
| Objective Value (miles) ------------------ 136.143483242
| Avg. Value / Client (miles) -------------- 0.548965658235
| Real Time to Optimize (sec.) ------------- 0.107157945633
*************************************************************************
-- The p-Median Problem --
[p] = 3
Optimize a model with 1701 rows, 1516 columns and 6115 nonzeros
Coefficient statistics:
Matrix range [2e-03, 3e+00]
Objective range [1e+00, 1e+00]
Bounds range [1e+00, 1e+00]
RHS range [1e+00, 3e+00]
Presolve time: 0.01s
Presolved: 1701 rows, 1516 columns, 6015 nonzeros
Variable types: 1 continuous, 1515 integer (1515 binary)
Found heuristic solution: objective 1.5785868
Found heuristic solution: objective 1.4568885
Root relaxation: objective 8.591137e-01, 912 iterations, 0.02 seconds
Nodes | Current Node | Objective Bounds | Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time
0 0 0.85911 0 338 1.45689 0.85911 41.0% - 0s
H 0 0 1.3729803 0.85911 37.4% - 0s
H 0 0 1.2590943 0.85911 31.8% - 0s
H 0 0 1.1257531 0.85911 23.7% - 0s
0 0 cutoff 0 1.12575 1.12575 0.00% - 0s
Cutting planes:
Gomory: 1
MIR: 1
Explored 0 nodes (2761 simplex iterations) in 0.13 seconds
Thread count was 4 (of 4 available processors)
Optimal solution found (tolerance 1.00e-04)
Best objective 1.125753136820e+00, best bound 1.125753136820e+00, gap 0.0%
*************************************************************************
| y6
| y9
| y15
| Selected Facility Locations -------------- ^^^^
| Candidate Facilities [p] ----------------- 3
| Objective Value (miles) ------------------ 1.12575313682
| Real Time to Optimize (sec.) ------------- 0.226248979568
*************************************************************************
-- The p-Center Problem --
[p] = 3
Optimize a model with 1701 rows, 1516 columns and 6115 nonzeros
Coefficient statistics:
Matrix range [2e-03, 3e+00]
Objective range [1e-05, 5e-01]
Bounds range [1e+00, 1e+00]
RHS range [1e+00, 3e+00]
Presolve time: 0.01s
Presolved: 1701 rows, 1516 columns, 6015 nonzeros
Variable types: 1 continuous, 1515 integer (1515 binary)
Found heuristic solution: objective 1.1092692
Root relaxation: objective 7.343400e-01, 739 iterations, 0.02 seconds
Nodes | Current Node | Objective Bounds | Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time
0 0 0.73434 0 369 1.10927 0.73434 33.8% - 0s
H 0 0 1.0374863 0.73434 29.2% - 0s
H 0 0 0.8373594 0.73434 12.3% - 0s
0 0 0.74354 0 411 0.83736 0.74354 11.2% - 0s
0 0 0.74705 0 427 0.83736 0.74705 10.8% - 0s
0 0 0.75609 0 342 0.83736 0.75609 9.71% - 0s
0 0 0.75609 0 287 0.83736 0.75609 9.71% - 0s
0 0 0.77291 0 292 0.83736 0.77291 7.70% - 0s
0 0 0.77304 0 293 0.83736 0.77304 7.68% - 0s
0 0 0.78962 0 371 0.83736 0.78962 5.70% - 0s
0 0 0.78994 0 343 0.83736 0.78994 5.66% - 0s
0 0 0.79100 0 383 0.83736 0.79100 5.54% - 0s
0 0 0.79102 0 384 0.83736 0.79102 5.53% - 0s
0 0 0.79115 0 385 0.83736 0.79115 5.52% - 0s
0 0 0.79192 0 369 0.83736 0.79192 5.43% - 0s
0 0 0.79215 0 377 0.83736 0.79215 5.40% - 0s
0 0 0.79238 0 375 0.83736 0.79238 5.37% - 0s
0 0 0.79238 0 386 0.83736 0.79238 5.37% - 0s
0 0 0.79240 0 387 0.83736 0.79240 5.37% - 0s
0 0 0.79261 0 372 0.83736 0.79261 5.34% - 0s
0 0 0.79264 0 384 0.83736 0.79264 5.34% - 0s
0 0 0.79294 0 433 0.83736 0.79294 5.31% - 0s
0 0 0.79298 0 400 0.83736 0.79298 5.30% - 0s
0 0 0.79388 0 405 0.83736 0.79388 5.19% - 0s
0 0 0.79388 0 406 0.83736 0.79388 5.19% - 0s
0 0 0.79395 0 396 0.83736 0.79395 5.18% - 0s
0 0 0.79400 0 403 0.83736 0.79400 5.18% - 0s
0 0 0.79417 0 390 0.83736 0.79417 5.16% - 0s
0 0 0.79418 0 389 0.83736 0.79418 5.16% - 0s
0 0 0.79419 0 390 0.83736 0.79419 5.16% - 0s
0 2 0.79419 0 390 0.83736 0.79419 5.16% - 0s
Cutting planes:
Gomory: 3
MIR: 9
Zero half: 11
Explored 18 nodes (2973 simplex iterations) in 0.76 seconds
Thread count was 4 (of 4 available processors)
Optimal solution found (tolerance 1.00e-04)
Best objective 8.373593975272e-01, best bound 8.373593975272e-01, gap 0.0%
*************************************************************************
| y6
| y9
| y15
| Selected Facility Locations -------------- ^^^^
| Candidate Facilities [p] ----------------- 3
| Objective Value (miles) ------------------ 0.837359397527
| Real Time to Optimize (sec.) ------------- 0.926659107208
*************************************************************************
-- The p-CentDian Problem --
[p] = 3
*************************************************************************
| y6
| y9
| y12
| y15
| Selected Facility Locations -------------- ^^^^
| Candidate Facilities [p] ----------------- 4
| Objective Value (miles) ------------------ 113.400992358
| Avg. Value / Client (miles) -------------- 0.457262065961
| Real Time to Optimize (sec.) ------------- 0.113733053207
*************************************************************************
-- The p-Median Problem --
[p] = 4
Optimize a model with 1701 rows, 1516 columns and 6115 nonzeros
Coefficient statistics:
Matrix range [2e-03, 3e+00]
Objective range [1e+00, 1e+00]
Bounds range [1e+00, 1e+00]
RHS range [1e+00, 4e+00]
Presolve time: 0.01s
Presolved: 1701 rows, 1516 columns, 6015 nonzeros
Variable types: 1 continuous, 1515 integer (1515 binary)
Found heuristic solution: objective 2.1103205
Found heuristic solution: objective 1.8656435
Found heuristic solution: objective 1.8309455
Root relaxation: objective 7.619977e-01, 1001 iterations, 0.03 seconds
Nodes | Current Node | Objective Bounds | Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time
0 0 0.76200 0 316 1.83095 0.76200 58.4% - 0s
H 0 0 1.4589251 0.76200 47.8% - 0s
H 0 0 1.4492867 0.76200 47.4% - 0s
H 0 0 1.4396841 0.76200 47.1% - 0s
0 0 0.81016 0 313 1.43968 0.81016 43.7% - 0s
0 0 0.81016 0 323 1.43968 0.81016 43.7% - 0s
H 0 0 1.4395274 0.81016 43.7% - 0s
H 0 0 1.4286353 0.81016 43.3% - 0s
0 0 0.84044 0 326 1.42864 0.84044 41.2% - 0s
H 0 0 1.3773513 0.84044 39.0% - 0s
0 0 0.86119 0 355 1.37735 0.86119 37.5% - 0s
0 0 0.86426 0 327 1.37735 0.86426 37.3% - 0s
H 0 0 1.3448528 0.86426 35.7% - 0s
H 0 0 1.2773295 0.86426 32.3% - 0s
0 0 0.86931 0 249 1.27733 0.86931 31.9% - 0s
0 0 0.86931 0 249 1.27733 0.86931 31.9% - 0s
H 0 0 1.2689454 0.86931 31.5% - 0s
H 0 0 1.0419579 0.86931 16.6% - 0s
H 0 0 1.0388639 0.86931 16.3% - 0s
0 0 0.87521 0 242 1.03886 0.87521 15.8% - 0s
0 0 0.91169 0 159 1.03886 0.91169 12.2% - 0s
0 0 0.94070 0 113 1.03886 0.94070 9.45% - 0s
H 0 0 0.9408986 0.94070 0.02% - 0s
Explored 0 nodes (8909 simplex iterations) in 0.39 seconds
Thread count was 4 (of 4 available processors)
Optimal solution found (tolerance 1.00e-04)
Best objective 9.408985900044e-01, best bound 9.408985900044e-01, gap 0.0%
*************************************************************************
| y4
| y6
| y12
| y13
| Selected Facility Locations -------------- ^^^^
| Candidate Facilities [p] ----------------- 4
| Objective Value (miles) ------------------ 0.940898590004
| Real Time to Optimize (sec.) ------------- 0.482060909271
*************************************************************************
-- The p-Center Problem --
[p] = 4
Optimize a model with 1701 rows, 1516 columns and 6115 nonzeros
Coefficient statistics:
Matrix range [2e-03, 3e+00]
Objective range [1e-05, 5e-01]
Bounds range [1e+00, 1e+00]
RHS range [1e+00, 4e+00]
Presolve time: 0.01s
Presolved: 1701 rows, 1516 columns, 6015 nonzeros
Variable types: 1 continuous, 1515 integer (1515 binary)
Found heuristic solution: objective 0.9313797
Root relaxation: objective 6.508189e-01, 528 iterations, 0.01 seconds
Nodes | Current Node | Objective Bounds | Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time
0 0 0.65082 0 249 0.93138 0.65082 30.1% - 0s
H 0 0 0.8177119 0.65082 20.4% - 0s
H 0 0 0.7267475 0.65082 10.4% - 0s
0 0 0.66575 0 273 0.72675 0.66575 8.39% - 0s
0 0 0.66575 0 243 0.72675 0.66575 8.39% - 0s
0 0 0.68720 0 241 0.72675 0.68720 5.44% - 0s
0 0 0.69032 0 213 0.72675 0.69032 5.01% - 0s
0 0 0.69233 0 226 0.72675 0.69233 4.74% - 0s
0 0 0.70014 0 177 0.72675 0.70014 3.66% - 0s
0 0 0.70037 0 177 0.72675 0.70037 3.63% - 0s
H 0 0 0.7059598 0.70037 0.79% - 0s
0 0 0.70073 0 216 0.70596 0.70073 0.74% - 0s
0 0 0.70129 0 215 0.70596 0.70129 0.66% - 0s
0 0 0.70129 0 228 0.70596 0.70129 0.66% - 0s
0 0 0.70129 0 153 0.70596 0.70129 0.66% - 0s
0 0 0.70135 0 169 0.70596 0.70135 0.65% - 0s
0 0 0.70298 0 171 0.70596 0.70298 0.42% - 0s
0 0 0.70320 0 203 0.70596 0.70320 0.39% - 0s
0 0 0.70378 0 198 0.70596 0.70378 0.31% - 0s
0 0 0.70380 0 203 0.70596 0.70380 0.31% - 0s
0 0 0.70384 0 203 0.70596 0.70384 0.30% - 0s
0 0 0.70384 0 123 0.70596 0.70384 0.30% - 0s
0 0 0.70384 0 59 0.70596 0.70384 0.30% - 0s
0 0 cutoff 0 0.70596 0.70596 0.00% - 0s
Explored 0 nodes (2083 simplex iterations) in 0.43 seconds
Thread count was 4 (of 4 available processors)
Optimal solution found (tolerance 1.00e-04)
Best objective 7.059598493583e-01, best bound 7.059598493583e-01, gap 0.0%
*************************************************************************
| y6
| y9
| y12
| y15
| Selected Facility Locations -------------- ^^^^
| Candidate Facilities [p] ----------------- 4
| Objective Value (miles) ------------------ 0.705959849358
| Real Time to Optimize (sec.) ------------- 0.577835798264
*************************************************************************
-- The p-CentDian Problem --
[p] = 4
*************************************************************************
| y6
| y9
| y10
| y12
| y15
| Selected Facility Locations -------------- ^^^^
| Candidate Facilities [p] ----------------- 5
| Objective Value (miles) ------------------ 102.664903993
| Avg. Value / Client (miles) -------------- 0.41397138707
| Real Time to Optimize (sec.) ------------- 0.110842943192
*************************************************************************
-- The p-Median Problem --
[p] = 5
Optimize a model with 1701 rows, 1516 columns and 6115 nonzeros
Coefficient statistics:
Matrix range [2e-03, 3e+00]
Objective range [1e+00, 1e+00]
Bounds range [1e+00, 1e+00]
RHS range [1e+00, 5e+00]
Presolve time: 0.01s
Presolved: 1701 rows, 1516 columns, 6015 nonzeros
Variable types: 1 continuous, 1515 integer (1515 binary)
Found heuristic solution: objective 2.1103205
Found heuristic solution: objective 2.0703495
Found heuristic solution: objective 2.0155480
Root relaxation: objective 7.212557e-01, 988 iterations, 0.02 seconds
Nodes | Current Node | Objective Bounds | Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time
0 0 0.72126 0 260 2.01555 0.72126 64.2% - 0s
H 0 0 1.8669800 0.72126 61.4% - 0s
H 0 0 1.5276038 0.72126 52.8% - 0s
H 0 0 1.4209713 0.72126 49.2% - 0s
H 0 0 1.2974999 0.72126 44.4% - 0s
0 0 0.73314 0 265 1.29750 0.73314 43.5% - 0s
0 0 0.74922 0 241 1.29750 0.74922 42.3% - 0s
H 0 0 1.2667513 0.74922 40.9% - 0s
H 0 0 0.9614777 0.74922 22.1% - 0s
H 0 0 0.9408986 0.74922 20.4% - 0s
0 0 0.83262 0 131 0.94090 0.83262 11.5% - 0s
0 0 0.83262 0 106 0.94090 0.83262 11.5% - 0s
H 0 0 0.9217976 0.83262 9.67% - 0s
0 0 cutoff 0 0.92180 0.92180 0.00% - 0s
Cutting planes:
Gomory: 1
Zero half: 1
Explored 0 nodes (6477 simplex iterations) in 0.28 seconds
Thread count was 4 (of 4 available processors)
Optimal solution found (tolerance 1.00e-04)
Best objective 9.217975808173e-01, best bound 9.217975808173e-01, gap 0.0%
*************************************************************************
| y4
| y6
| y7
| y9
| y15
| Selected Facility Locations -------------- ^^^^
| Candidate Facilities [p] ----------------- 5
| Objective Value (miles) ------------------ 0.921797580817
| Real Time to Optimize (sec.) ------------- 0.38795208931
*************************************************************************
-- The p-Center Problem --
[p] = 5
Optimize a model with 1701 rows, 1516 columns and 6115 nonzeros
Coefficient statistics:
Matrix range [2e-03, 3e+00]
Objective range [1e-05, 5e-01]
Bounds range [1e+00, 1e+00]
RHS range [1e+00, 5e+00]
Presolve time: 0.01s
Presolved: 1701 rows, 1516 columns, 6015 nonzeros
Variable types: 1 continuous, 1515 integer (1515 binary)
Found heuristic solution: objective 0.8373682
Root relaxation: objective 5.933325e-01, 494 iterations, 0.01 seconds
Nodes | Current Node | Objective Bounds | Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time
0 0 0.59333 0 213 0.83737 0.59333 29.1% - 0s
H 0 0 0.7129892 0.59333 16.8% - 0s
H 0 0 0.6844683 0.59333 13.3% - 0s
0 0 0.60142 0 201 0.68447 0.60142 12.1% - 0s
0 0 0.60142 0 230 0.68447 0.60142 12.1% - 0s
0 0 0.61223 0 213 0.68447 0.61223 10.6% - 0s
H 0 0 0.6843145 0.61223 10.5% - 0s
0 0 0.61913 0 167 0.68431 0.61913 9.53% - 0s
0 0 0.62372 0 160 0.68431 0.62372 8.85% - 0s
0 0 0.62401 0 222 0.68431 0.62401 8.81% - 0s
0 0 0.62401 0 222 0.68431 0.62401 8.81% - 0s
0 0 0.62412 0 222 0.68431 0.62412 8.80% - 0s
0 0 0.62442 0 213 0.68431 0.62442 8.75% - 0s
0 2 0.62442 0 213 0.68431 0.62442 8.75% - 0s
Cutting planes:
Gomory: 4
MIR: 1
Explored 18 nodes (1423 simplex iterations) in 0.33 seconds
Thread count was 4 (of 4 available processors)
Optimal solution found (tolerance 1.00e-04)
Best objective 6.843145099126e-01, best bound 6.843145099126e-01, gap 0.0%
*************************************************************************
| y6
| y9
| y10
| y12
| y15
| Selected Facility Locations -------------- ^^^^
| Candidate Facilities [p] ----------------- 5
| Objective Value (miles) ------------------ 0.684314509913
| Real Time to Optimize (sec.) ------------- 0.519908905029
*************************************************************************
-- The p-CentDian Problem --
[p] = 5
*************************************************************************
| y3
| y6
| y10
| y12
| y13
| y15
| Selected Facility Locations -------------- ^^^^
| Candidate Facilities [p] ----------------- 6
| Objective Value (miles) ------------------ 94.5669128279
| Avg. Value / Client (miles) -------------- 0.381318196887
| Real Time to Optimize (sec.) ------------- 0.126721143723
*************************************************************************
-- The p-Median Problem --
[p] = 6
Optimize a model with 1701 rows, 1516 columns and 6115 nonzeros
Coefficient statistics:
Matrix range [2e-03, 3e+00]
Objective range [1e+00, 1e+00]
Bounds range [1e+00, 1e+00]
RHS range [1e+00, 6e+00]
Presolve time: 0.01s
Presolved: 1701 rows, 1516 columns, 6015 nonzeros
Variable types: 1 continuous, 1515 integer (1515 binary)
Found heuristic solution: objective 2.1103205
Found heuristic solution: objective 1.7981720
Found heuristic solution: objective 1.7748490
Root relaxation: objective 7.038147e-01, 798 iterations, 0.02 seconds
Nodes | Current Node | Objective Bounds | Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time
0 0 0.70381 0 261 1.77485 0.70381 60.3% - 0s
H 0 0 1.6026288 0.70381 56.1% - 0s
H 0 0 1.4568885 0.70381 51.7% - 0s
H 0 0 1.4495653 0.70381 51.4% - 0s
H 0 0 0.7186486 0.70381 2.06% - 0s
0 0 cutoff 0 0.71865 0.71865 0.00% - 0s
Cutting planes:
Gomory: 1
MIR: 2
Explored 0 nodes (1890 simplex iterations) in 0.11 seconds
Thread count was 4 (of 4 available processors)
Optimal solution found (tolerance 1.00e-04)
Best objective 7.186486151187e-01, best bound 7.186486151187e-01, gap 0.0%
*************************************************************************
| y4
| y6
| y7
| y9
| y12
| y14
| Selected Facility Locations -------------- ^^^^
| Candidate Facilities [p] ----------------- 6
| Objective Value (miles) ------------------ 0.718648615119
| Real Time to Optimize (sec.) ------------- 0.217437982559
*************************************************************************
-- The p-Center Problem --
[p] = 6
Optimize a model with 1701 rows, 1516 columns and 6115 nonzeros
Coefficient statistics:
Matrix range [2e-03, 3e+00]
Objective range [1e-05, 5e-01]
Bounds range [1e+00, 1e+00]
RHS range [1e+00, 6e+00]
Presolve time: 0.01s
Presolved: 1701 rows, 1516 columns, 6015 nonzeros
Variable types: 1 continuous, 1515 integer (1515 binary)
Found heuristic solution: objective 0.8222154
Root relaxation: objective 5.511881e-01, 345 iterations, 0.01 seconds
Nodes | Current Node | Objective Bounds | Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time
0 0 0.55119 0 68 0.82222 0.55119 33.0% - 0s
H 0 0 0.5516980 0.55119 0.09% - 0s
0 0 cutoff 0 0.55170 0.55170 0.00% - 0s
Cutting planes:
MIR: 1
Explored 0 nodes (346 simplex iterations) in 0.06 seconds
Thread count was 4 (of 4 available processors)
Optimal solution found (tolerance 1.00e-04)
Best objective 5.516979567454e-01, best bound 5.516979567454e-01, gap 0.0%
*************************************************************************
| y4
| y6
| y9
| y10
| y12
| y15
| Selected Facility Locations -------------- ^^^^
| Candidate Facilities [p] ----------------- 6
| Objective Value (miles) ------------------ 0.551697956745
| Real Time to Optimize (sec.) ------------- 0.202598810196
*************************************************************************
-- The p-CentDian Problem --
[p] = 6
*************************************************************************
| y3
| y4
| y6
| y10
| y12
| y13
| y15
| Selected Facility Locations -------------- ^^^^
| Candidate Facilities [p] ----------------- 7
| Objective Value (miles) ------------------ 87.3193388308
| Avg. Value / Client (miles) -------------- 0.352094108189
| Real Time to Optimize (sec.) ------------- 0.107014894485
*************************************************************************
-- The p-Median Problem --
[p] = 7
Optimize a model with 1701 rows, 1516 columns and 6115 nonzeros
Coefficient statistics:
Matrix range [2e-03, 3e+00]
Objective range [1e+00, 1e+00]
Bounds range [1e+00, 1e+00]
RHS range [1e+00, 7e+00]
Presolve time: 0.01s
Presolved: 1701 rows, 1516 columns, 6015 nonzeros
Variable types: 1 continuous, 1515 integer (1515 binary)
Found heuristic solution: objective 2.1103205
Found heuristic solution: objective 2.0992328
Root relaxation: objective 6.923302e-01, 682 iterations, 0.02 seconds
Nodes | Current Node | Objective Bounds | Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time
0 0 0.69233 0 30 2.09923 0.69233 67.0% - 0s
H 0 0 0.9942685 0.69233 30.4% - 0s
H 0 0 0.9374837 0.69233 26.2% - 0s
H 0 0 0.7174374 0.69233 3.50% - 0s
0 0 cutoff 0 0.71744 0.71744 0.00% - 0s
Cutting planes:
Gomory: 3
Explored 0 nodes (1377 simplex iterations) in 0.08 seconds
Thread count was 4 (of 4 available processors)
Optimal solution found (tolerance 1.00e-04)
Best objective 7.174373546020e-01, best bound 7.174373546020e-01, gap 0.0%
*************************************************************************
| y4
| y5
| y6
| y9
| y10
| y12
| y14
| Selected Facility Locations -------------- ^^^^
| Candidate Facilities [p] ----------------- 7
| Objective Value (miles) ------------------ 0.717437354602
| Real Time to Optimize (sec.) ------------- 0.19621014595
*************************************************************************
-- The p-Center Problem --
[p] = 7
Optimize a model with 1701 rows, 1516 columns and 6115 nonzeros
Coefficient statistics:
Matrix range [2e-03, 3e+00]
Objective range [1e-05, 5e-01]
Bounds range [1e+00, 1e+00]
RHS range [1e+00, 7e+00]
Presolve time: 0.01s
Presolved: 1701 rows, 1516 columns, 6015 nonzeros
Variable types: 1 continuous, 1515 integer (1515 binary)
Found heuristic solution: objective 0.8209395
Root relaxation: objective 5.323701e-01, 342 iterations, 0.01 seconds
Nodes | Current Node | Objective Bounds | Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time
0 0 0.53237 0 68 0.82094 0.53237 35.2% - 0s
H 0 0 0.5438722 0.53237 2.11% - 0s
0 0 0.53545 0 120 0.54387 0.53545 1.55% - 0s
0 0 0.53571 0 115 0.54387 0.53571 1.50% - 0s
H 0 0 0.5365451 0.53571 0.16% - 0s
0 0 cutoff 0 0.53655 0.53655 0.00% - 0s
Cutting planes:
Gomory: 1
Explored 0 nodes (647 simplex iterations) in 0.12 seconds
Thread count was 4 (of 4 available processors)
Optimal solution found (tolerance 1.00e-04)
Best objective 5.365451355982e-01, best bound 5.365451355982e-01, gap 0.0%
*************************************************************************
| y4
| y6
| y9
| y10
| y12
| y13
| y15
| Selected Facility Locations -------------- ^^^^
| Candidate Facilities [p] ----------------- 7
| Objective Value (miles) ------------------ 0.536545135598
| Real Time to Optimize (sec.) ------------- 0.298075914383
*************************************************************************
-- The p-CentDian Problem --
[p] = 7
*************************************************************************
| y3
| y4
| y5
| y6
| y10
| y12
| y13
| y15
| Selected Facility Locations -------------- ^^^^
| Candidate Facilities [p] ----------------- 8
| Objective Value (miles) ------------------ 83.7381742802
| Avg. Value / Client (miles) -------------- 0.337653928549
| Real Time to Optimize (sec.) ------------- 0.122640132904
*************************************************************************
-- The p-Median Problem --
[p] = 8
Optimize a model with 1701 rows, 1516 columns and 6115 nonzeros
Coefficient statistics:
Matrix range [2e-03, 3e+00]
Objective range [1e+00, 1e+00]
Bounds range [1e+00, 1e+00]
RHS range [1e+00, 8e+00]
Presolve time: 0.01s
Presolved: 1701 rows, 1516 columns, 6015 nonzeros
Variable types: 1 continuous, 1515 integer (1515 binary)
Found heuristic solution: objective 2.7112002
Found heuristic solution: objective 2.4632524
Found heuristic solution: objective 2.2724425
Root relaxation: objective 6.923302e-01, 500 iterations, 0.01 seconds
Nodes | Current Node | Objective Bounds | Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time
0 0 0.69233 0 8 2.27244 0.69233 69.5% - 0s
H 0 0 0.9008560 0.69233 23.1% - 0s
H 0 0 0.8317502 0.69233 16.8% - 0s
H 0 0 0.6923302 0.69233 0.00% - 0s
Explored 0 nodes (982 simplex iterations) in 0.06 seconds
Thread count was 4 (of 4 available processors)
Optimal solution found (tolerance 1.00e-04)
Best objective 6.923302409058e-01, best bound 6.923302409058e-01, gap 0.0%
*************************************************************************
| y1
| y4
| y5
| y6
| y9
| y10
| y12
| y14
| Selected Facility Locations -------------- ^^^^
| Candidate Facilities [p] ----------------- 8
| Objective Value (miles) ------------------ 0.692330240906
| Real Time to Optimize (sec.) ------------- 0.158569097519
*************************************************************************
-- The p-Center Problem --
[p] = 8
Optimize a model with 1701 rows, 1516 columns and 6115 nonzeros
Coefficient statistics:
Matrix range [2e-03, 3e+00]
Objective range [1e-05, 5e-01]
Bounds range [1e+00, 1e+00]
RHS range [1e+00, 8e+00]
Presolve time: 0.01s
Presolved: 1701 rows, 1516 columns, 6015 nonzeros
Variable types: 1 continuous, 1515 integer (1515 binary)
Found heuristic solution: objective 0.8063274
Root relaxation: objective 5.170791e-01, 306 iterations, 0.01 seconds
Nodes | Current Node | Objective Bounds | Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time
0 0 0.51708 0 117 0.80633 0.51708 35.9% - 0s
H 0 0 0.5287194 0.51708 2.20% - 0s
H 0 0 0.5254779 0.51708 1.60% - 0s
0 0 0.52280 0 49 0.52548 0.52280 0.51% - 0s
0 0 0.52280 0 46 0.52548 0.52280 0.51% - 0s
0 0 0.52425 0 48 0.52548 0.52425 0.23% - 0s
0 0 0.52435 0 48 0.52548 0.52435 0.21% - 0s
0 0 cutoff 0 0.52548 0.52548 0.00% - 0s
Cutting planes:
Gomory: 2
Explored 0 nodes (457 simplex iterations) in 0.09 seconds
Thread count was 4 (of 4 available processors)
Optimal solution found (tolerance 1.00e-04)
Best objective 5.254779370978e-01, best bound 5.254779370978e-01, gap 0.0%
*************************************************************************
| y4
| y5
| y6
| y8
| y9
| y10
| y12
| y15
| Selected Facility Locations -------------- ^^^^
| Candidate Facilities [p] ----------------- 8
| Objective Value (miles) ------------------ 0.525477937098
| Real Time to Optimize (sec.) ------------- 0.23900103569
*************************************************************************
-- The p-CentDian Problem --
[p] = 8
*************************************************************************
| y3
| y4
| y5
| y6
| y8
| y10
| y12
| y13
| y15
| Selected Facility Locations -------------- ^^^^
| Candidate Facilities [p] ----------------- 9
| Objective Value (miles) ------------------ 80.74360394
| Avg. Value / Client (miles) -------------- 0.325579048145
| Real Time to Optimize (sec.) ------------- 0.0997478961945
*************************************************************************
-- The p-Median Problem --
[p] = 9
Optimize a model with 1701 rows, 1516 columns and 6115 nonzeros
Coefficient statistics:
Matrix range [2e-03, 3e+00]
Objective range [1e+00, 1e+00]
Bounds range [1e+00, 1e+00]
RHS range [1e+00, 9e+00]
Presolve time: 0.01s
Presolved: 1701 rows, 1516 columns, 6015 nonzeros
Variable types: 1 continuous, 1515 integer (1515 binary)
Found heuristic solution: objective 2.0992328
Found heuristic solution: objective 2.0125124
Found heuristic solution: objective 2.0091626
Root relaxation: objective 6.923302e-01, 406 iterations, 0.01 seconds
Nodes | Current Node | Objective Bounds | Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time
* 0 0 0 0.6923302 0.69233 0.00% - 0s
Explored 0 nodes (618 simplex iterations) in 0.04 seconds
Thread count was 4 (of 4 available processors)
Optimal solution found (tolerance 1.00e-04)
Best objective 6.923302409058e-01, best bound 6.923302409058e-01, gap 0.0%
*************************************************************************
| y1
| y4
| y5
| y6
| y9
| y10
| y12
| y13
| y14
| Selected Facility Locations -------------- ^^^^
| Candidate Facilities [p] ----------------- 9
| Objective Value (miles) ------------------ 0.692330240906
| Real Time to Optimize (sec.) ------------- 0.138150930405
*************************************************************************
-- The p-Center Problem --
[p] = 9
Optimize a model with 1701 rows, 1516 columns and 6115 nonzeros
Coefficient statistics:
Matrix range [2e-03, 3e+00]
Objective range [1e-05, 5e-01]
Bounds range [1e+00, 1e+00]
RHS range [1e+00, 9e+00]
Presolve time: 0.01s
Presolved: 1701 rows, 1516 columns, 6015 nonzeros
Variable types: 1 continuous, 1515 integer (1515 binary)
Found heuristic solution: objective 0.6410806
Root relaxation: objective 5.103203e-01, 222 iterations, 0.00 seconds
Nodes | Current Node | Objective Bounds | Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time
0 0 0.51032 0 26 0.64108 0.51032 20.4% - 0s
H 0 0 0.5103251 0.51032 0.00% - 0s
Explored 0 nodes (222 simplex iterations) in 0.04 seconds
Thread count was 4 (of 4 available processors)
Optimal solution found (tolerance 1.00e-04)
Best objective 5.103251159507e-01, best bound 5.103203326948e-01, gap 0.0009%
*************************************************************************
| y4
| y5
| y6
| y8
| y9
| y10
| y12
| y13
| y15
| Selected Facility Locations -------------- ^^^^
| Candidate Facilities [p] ----------------- 9
| Objective Value (miles) ------------------ 0.510325115951
| Real Time to Optimize (sec.) ------------- 0.177711963654
*************************************************************************
-- The p-CentDian Problem --
[p] = 9
*************************************************************************
| y3
| y4
| y5
| y6
| y8
| y9
| y10
| y12
| y13
| y15
| Selected Facility Locations -------------- ^^^^
| Candidate Facilities [p] ----------------- 10
| Objective Value (miles) ------------------ 78.6731180279
| Avg. Value / Client (miles) -------------- 0.317230314628
| Real Time to Optimize (sec.) ------------- 0.102800130844
*************************************************************************
-- The p-Median Problem --
[p] = 10
Optimize a model with 1701 rows, 1516 columns and 6115 nonzeros
Coefficient statistics:
Matrix range [2e-03, 3e+00]
Objective range [1e+00, 1e+00]
Bounds range [1e+00, 1e+00]
RHS range [1e+00, 1e+01]
Found heuristic solution: objective 2.81913
Presolve time: 0.01s
Presolved: 1701 rows, 1516 columns, 6015 nonzeros
Variable types: 1 continuous, 1515 integer (1515 binary)
Root relaxation: objective 6.923302e-01, 322 iterations, 0.01 seconds
Nodes | Current Node | Objective Bounds | Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time
* 0 0 0 0.6923302 0.69233 0.00% - 0s
Explored 0 nodes (466 simplex iterations) in 0.03 seconds
Thread count was 4 (of 4 available processors)
Optimal solution found (tolerance 1.00e-04)
Best objective 6.923302409058e-01, best bound 6.923302409058e-01, gap 0.0%
*************************************************************************
| y1
| y4
| y5
| y6
| y9
| y10
| y12
| y13
| y14
| y15
| Selected Facility Locations -------------- ^^^^
| Candidate Facilities [p] ----------------- 10
| Objective Value (miles) ------------------ 0.692330240906
| Real Time to Optimize (sec.) ------------- 0.128736972809
*************************************************************************
-- The p-Center Problem --
[p] = 10
Optimize a model with 1701 rows, 1516 columns and 6115 nonzeros
Coefficient statistics:
Matrix range [2e-03, 3e+00]
Objective range [1e-05, 5e-01]
Bounds range [1e+00, 1e+00]
RHS range [1e+00, 1e+01]
Found heuristic solution: objective 2.05011
Presolve time: 0.01s
Presolved: 1701 rows, 1516 columns, 6015 nonzeros
Variable types: 1 continuous, 1515 integer (1515 binary)
Root relaxation: objective 5.049770e-01, 185 iterations, 0.00 seconds
Nodes | Current Node | Objective Bounds | Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time
* 0 0 0 0.5049770 0.50498 0.00% - 0s
Explored 0 nodes (185 simplex iterations) in 0.03 seconds
Thread count was 4 (of 4 available processors)
Optimal solution found (tolerance 1.00e-04)
Best objective 5.049769752478e-01, best bound 5.049769752478e-01, gap 0.0%
*************************************************************************
| y3
| y4
| y5
| y6
| y8
| y9
| y10
| y12
| y13
| y15
| Selected Facility Locations -------------- ^^^^
| Candidate Facilities [p] ----------------- 10
| Objective Value (miles) ------------------ 0.504976975248
| Real Time to Optimize (sec.) ------------- 0.317002058029
*************************************************************************
-- The p-CentDian Problem --
[p] = 10
*************************************************************************
| y1
| y2
| y3
| y4
| y5
| y6
| y9
| y10
| y12
| y13
| y15
| Selected Facility Locations -------------- ^^^^
| Candidate Facilities [p] ----------------- 11
| Objective Value (miles) ------------------ 77.3823534807
| Avg. Value / Client (miles) -------------- 0.312025618874
| Real Time to Optimize (sec.) ------------- 0.0958559513092
*************************************************************************
-- The p-Median Problem --
[p] = 11
Optimize a model with 1701 rows, 1516 columns and 6115 nonzeros
Coefficient statistics:
Matrix range [2e-03, 3e+00]
Objective range [1e+00, 1e+00]
Bounds range [1e+00, 1e+00]
RHS range [1e+00, 1e+01]
Found heuristic solution: objective 2.46144
Presolve time: 0.01s
Presolved: 1701 rows, 1516 columns, 6015 nonzeros
Variable types: 1 continuous, 1515 integer (1515 binary)
Root relaxation: objective 6.923302e-01, 295 iterations, 0.00 seconds
Nodes | Current Node | Objective Bounds | Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time
* 0 0 0 0.6923302 0.69233 0.00% - 0s
Explored 0 nodes (441 simplex iterations) in 0.03 seconds
Thread count was 4 (of 4 available processors)
Optimal solution found (tolerance 1.00e-04)
Best objective 6.923302409058e-01, best bound 6.923302409058e-01, gap 0.0%
*************************************************************************
| y1
| y3
| y4
| y5
| y6
| y9
| y10
| y12
| y13
| y14
| y15
| Selected Facility Locations -------------- ^^^^
| Candidate Facilities [p] ----------------- 11
| Objective Value (miles) ------------------ 0.692330240906
| Real Time to Optimize (sec.) ------------- 0.126229047775
*************************************************************************
-- The p-Center Problem --
[p] = 11
Optimize a model with 1701 rows, 1516 columns and 6115 nonzeros
Coefficient statistics:
Matrix range [2e-03, 3e+00]
Objective range [1e-05, 5e-01]
Bounds range [1e+00, 1e+00]
RHS range [1e+00, 1e+01]
Found heuristic solution: objective 1.8681
Presolve time: 0.01s
Presolved: 1701 rows, 1516 columns, 6015 nonzeros
Variable types: 1 continuous, 1515 integer (1515 binary)
Root relaxation: objective 5.023746e-01, 175 iterations, 0.00 seconds
Nodes | Current Node | Objective Bounds | Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time
* 0 0 0 0.5023746 0.50237 0.00% - 0s
Explored 0 nodes (175 simplex iterations) in 0.02 seconds
Thread count was 4 (of 4 available processors)
Optimal solution found (tolerance 1.00e-04)
Best objective 5.023746273704e-01, best bound 5.023746273704e-01, gap 0.0%
*************************************************************************
| y1
| y2
| y3
| y4
| y5
| y6
| y9
| y10
| y12
| y13
| y15
| Selected Facility Locations -------------- ^^^^
| Candidate Facilities [p] ----------------- 11
| Objective Value (miles) ------------------ 0.50237462737
| Real Time to Optimize (sec.) ------------- 0.165828943253
*************************************************************************
-- The p-CentDian Problem --
[p] = 11
*************************************************************************
| y1
| y2
| y3
| y4
| y5
| y6
| y8
| y9
| y10
| y12
| y13
| y15
| Selected Facility Locations -------------- ^^^^
| Candidate Facilities [p] ----------------- 12
| Objective Value (miles) ------------------ 76.453088462
| Avg. Value / Client (miles) -------------- 0.308278582508
| Real Time to Optimize (sec.) ------------- 0.101176023483
*************************************************************************
-- The p-Median Problem --
[p] = 12
Optimize a model with 1701 rows, 1516 columns and 6115 nonzeros
Coefficient statistics:
Matrix range [2e-03, 3e+00]
Objective range [1e+00, 1e+00]
Bounds range [1e+00, 1e+00]
RHS range [1e+00, 1e+01]
Found heuristic solution: objective 3.04114
Presolve time: 0.01s
Presolved: 1701 rows, 1516 columns, 6015 nonzeros
Variable types: 1 continuous, 1515 integer (1515 binary)
Root relaxation: objective 6.923302e-01, 220 iterations, 0.00 seconds
Nodes | Current Node | Objective Bounds | Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time
* 0 0 0 0.6923302 0.69233 0.00% - 0s
Explored 0 nodes (307 simplex iterations) in 0.03 seconds
Thread count was 4 (of 4 available processors)
Optimal solution found (tolerance 1.00e-04)
Best objective 6.923302409058e-01, best bound 6.923302409058e-01, gap 0.0%
*************************************************************************
| y1
| y3
| y4
| y5
| y6
| y9
| y10
| y11
| y12
| y13
| y14
| y15
| Selected Facility Locations -------------- ^^^^
| Candidate Facilities [p] ----------------- 12
| Objective Value (miles) ------------------ 0.692330240906
| Real Time to Optimize (sec.) ------------- 0.120443105698
*************************************************************************
-- The p-Center Problem --
[p] = 12
Optimize a model with 1701 rows, 1516 columns and 6115 nonzeros
Coefficient statistics:
Matrix range [2e-03, 3e+00]
Objective range [1e-05, 5e-01]
Bounds range [1e+00, 1e+00]
RHS range [1e+00, 1e+01]
Found heuristic solution: objective 2.19009
Presolve time: 0.01s
Presolved: 1701 rows, 1516 columns, 6015 nonzeros
Variable types: 1 continuous, 1515 integer (1515 binary)
Root relaxation: objective 5.005011e-01, 176 iterations, 0.00 seconds
Nodes | Current Node | Objective Bounds | Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time
* 0 0 0 0.5005011 0.50050 0.00% - 0s
Explored 0 nodes (176 simplex iterations) in 0.03 seconds
Thread count was 4 (of 4 available processors)
Optimal solution found (tolerance 1.00e-04)
Best objective 5.005011091877e-01, best bound 5.005011091877e-01, gap 0.0%
*************************************************************************
| y1
| y2
| y3
| y4
| y5
| y6
| y8
| y9
| y10
| y12
| y13
| y15
| Selected Facility Locations -------------- ^^^^
| Candidate Facilities [p] ----------------- 12
| Objective Value (miles) ------------------ 0.500501109188
| Real Time to Optimize (sec.) ------------- 0.165493011475
*************************************************************************
-- The p-CentDian Problem --
[p] = 12
*************************************************************************
| y1
| y2
| y3
| y4
| y5
| y6
| y8
| y9
| y10
| y11
| y12
| y13
| y15
| Selected Facility Locations -------------- ^^^^
| Candidate Facilities [p] ----------------- 13
| Objective Value (miles) ------------------ 75.7366934931
| Avg. Value / Client (miles) -------------- 0.305389893117
| Real Time to Optimize (sec.) ------------- 0.0976669788361
*************************************************************************
-- The p-Median Problem --
[p] = 13
Optimize a model with 1701 rows, 1516 columns and 6115 nonzeros
Coefficient statistics:
Matrix range [2e-03, 3e+00]
Objective range [1e+00, 1e+00]
Bounds range [1e+00, 1e+00]
RHS range [1e+00, 1e+01]
Found heuristic solution: objective 3.04114
Presolve time: 0.01s
Presolved: 1701 rows, 1516 columns, 6015 nonzeros
Variable types: 1 continuous, 1515 integer (1515 binary)
Root relaxation: objective 6.923302e-01, 224 iterations, 0.00 seconds
Nodes | Current Node | Objective Bounds | Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time
* 0 0 0 0.6923302 0.69233 0.00% - 0s
Explored 0 nodes (318 simplex iterations) in 0.03 seconds
Thread count was 4 (of 4 available processors)
Optimal solution found (tolerance 1.00e-04)
Best objective 6.923302409058e-01, best bound 6.923302409058e-01, gap 0.0%
*************************************************************************
| y1
| y3
| y4
| y5
| y6
| y8
| y9
| y10
| y11
| y12
| y13
| y14
| y15
| Selected Facility Locations -------------- ^^^^
| Candidate Facilities [p] ----------------- 13
| Objective Value (miles) ------------------ 0.692330240906
| Real Time to Optimize (sec.) ------------- 0.122086048126
*************************************************************************
-- The p-Center Problem --
[p] = 13
Optimize a model with 1701 rows, 1516 columns and 6115 nonzeros
Coefficient statistics:
Matrix range [2e-03, 3e+00]
Objective range [1e-05, 5e-01]
Bounds range [1e+00, 1e+00]
RHS range [1e+00, 1e+01]
Found heuristic solution: objective 2.16651
Presolve time: 0.01s
Presolved: 1701 rows, 1516 columns, 6015 nonzeros
Variable types: 1 continuous, 1515 integer (1515 binary)
Root relaxation: objective 4.990568e-01, 170 iterations, 0.00 seconds
Nodes | Current Node | Objective Bounds | Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time
* 0 0 0 0.4990568 0.49906 0.00% - 0s
Explored 0 nodes (170 simplex iterations) in 0.02 seconds
Thread count was 4 (of 4 available processors)
Optimal solution found (tolerance 1.00e-04)
Best objective 4.990567644923e-01, best bound 4.990567644923e-01, gap 0.0%
*************************************************************************
| y1
| y2
| y3
| y4
| y5
| y6
| y8
| y9
| y10
| y11
| y12
| y13
| y15
| Selected Facility Locations -------------- ^^^^
| Candidate Facilities [p] ----------------- 13
| Objective Value (miles) ------------------ 0.499056764492
| Real Time to Optimize (sec.) ------------- 0.172690153122
*************************************************************************
-- The p-CentDian Problem --
[p] = 13
*************************************************************************
| y1
| y2
| y3
| y4
| y5
| y6
| y8
| y9
| y10
| y11
| y12
| y13
| y14
| y15
| Selected Facility Locations -------------- ^^^^
| Candidate Facilities [p] ----------------- 14
| Objective Value (miles) ------------------ 75.1421439649
| Avg. Value / Client (miles) -------------- 0.302992515988
| Real Time to Optimize (sec.) ------------- 0.0979490280151
*************************************************************************
-- The p-Median Problem --
[p] = 14
Optimize a model with 1701 rows, 1516 columns and 6115 nonzeros
Coefficient statistics:
Matrix range [2e-03, 3e+00]
Objective range [1e+00, 1e+00]
Bounds range [1e+00, 1e+00]
RHS range [1e+00, 1e+01]
Found heuristic solution: objective 3.04114
Presolve time: 0.01s
Presolved: 1701 rows, 1516 columns, 6015 nonzeros
Variable types: 1 continuous, 1515 integer (1515 binary)
Root relaxation: objective 6.923302e-01, 192 iterations, 0.00 seconds
Nodes | Current Node | Objective Bounds | Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time
* 0 0 0 0.6923302 0.69233 0.00% - 0s
Explored 0 nodes (192 simplex iterations) in 0.02 seconds
Thread count was 4 (of 4 available processors)
Optimal solution found (tolerance 1.00e-04)
Best objective 6.923302409058e-01, best bound 6.923302409058e-01, gap 0.0%
*************************************************************************
| y1
| y3
| y4
| y5
| y6
| y7
| y8
| y9
| y10
| y11
| y12
| y13
| y14
| y15
| Selected Facility Locations -------------- ^^^^
| Candidate Facilities [p] ----------------- 14
| Objective Value (miles) ------------------ 0.692330240906
| Real Time to Optimize (sec.) ------------- 0.118752002716
*************************************************************************
-- The p-Center Problem --
[p] = 14
Optimize a model with 1701 rows, 1516 columns and 6115 nonzeros
Coefficient statistics:
Matrix range [2e-03, 3e+00]
Objective range [1e-05, 5e-01]
Bounds range [1e+00, 1e+00]
RHS range [1e+00, 1e+01]
Found heuristic solution: objective 2.21301
Presolve time: 0.01s
Presolved: 1701 rows, 1516 columns, 6015 nonzeros
Variable types: 1 continuous, 1515 integer (1515 binary)
Root relaxation: objective 4.976614e-01, 139 iterations, 0.00 seconds
Nodes | Current Node | Objective Bounds | Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time
* 0 0 0 0.4976614 0.49766 0.00% - 0s
Explored 0 nodes (139 simplex iterations) in 0.02 seconds
Thread count was 4 (of 4 available processors)
Optimal solution found (tolerance 1.00e-04)
Best objective 4.976613784467e-01, best bound 4.976613784467e-01, gap 0.0%
*************************************************************************
| y1
| y2
| y3
| y4
| y5
| y6
| y8
| y9
| y10
| y11
| y12
| y13
| y14
| y15
| Selected Facility Locations -------------- ^^^^
| Candidate Facilities [p] ----------------- 14
| Objective Value (miles) ------------------ 0.497661378447
| Real Time to Optimize (sec.) ------------- 0.176685810089
*************************************************************************
-- The p-CentDian Problem --
[p] = 14
*************************************************************************
| y1
| y2
| y3
| y4
| y5
| y6
| y7
| y8
| y9
| y10
| y11
| y12
| y13
| y14
| y15
| Selected Facility Locations -------------- ^^^^
| Candidate Facilities [p] ----------------- 15
| Objective Value (miles) ------------------ 74.615226966
| Avg. Value / Client (miles) -------------- 0.300867850669
| Real Time to Optimize (sec.) ------------- 0.0964210033417
*************************************************************************
-- The p-Median Problem --
[p] = 15
Optimize a model with 1701 rows, 1516 columns and 6115 nonzeros
Coefficient statistics:
Matrix range [2e-03, 3e+00]
Objective range [1e+00, 1e+00]
Bounds range [1e+00, 1e+00]
RHS range [1e+00, 2e+01]
Found heuristic solution: objective 3.04114
Presolve removed 1701 rows and 1516 columns
Presolve time: 0.00s
Presolve: All rows and columns removed
Explored 0 nodes (0 simplex iterations) in 0.01 seconds
Thread count was 1 (of 4 available processors)
Optimal solution found (tolerance 1.00e-04)
Best objective 6.923302409058e-01, best bound 6.923302409058e-01, gap 0.0%
*************************************************************************
| y1
| y2
| y3
| y4
| y5
| y6
| y7
| y8
| y9
| y10
| y11
| y12
| y13
| y14
| y15
| Selected Facility Locations -------------- ^^^^
| Candidate Facilities [p] ----------------- 15
| Objective Value (miles) ------------------ 0.692330240906
| Real Time to Optimize (sec.) ------------- 0.104492902756
*************************************************************************
-- The p-Center Problem --
[p] = 15
Optimize a model with 1701 rows, 1516 columns and 6115 nonzeros
Coefficient statistics:
Matrix range [2e-03, 3e+00]
Objective range [1e-05, 5e-01]
Bounds range [1e+00, 1e+00]
RHS range [1e+00, 2e+01]
Found heuristic solution: objective 2.20619
Presolve removed 1701 rows and 1516 columns
Presolve time: 0.00s
Presolve: All rows and columns removed
Explored 0 nodes (0 simplex iterations) in 0.01 seconds
Thread count was 1 (of 4 available processors)
Optimal solution found (tolerance 1.00e-04)
Best objective 4.965990457876e-01, best bound 4.965990457876e-01, gap 0.0%
*************************************************************************
| y1
| y2
| y3
| y4
| y5
| y6
| y7
| y8
| y9
| y10
| y11
| y12
| y13
| y14
| y15
| Selected Facility Locations -------------- ^^^^
| Candidate Facilities [p] ----------------- 15
| Objective Value (miles) ------------------ 0.496599045788
| Real Time to Optimize (sec.) ------------- 0.153763055801
*************************************************************************
-- The p-CentDian Problem --
[p] = 15