In [1]:
import pandas as pd
import matplotlib.pyplot as plt
In [2]:
df_wine = pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data', header=None)
In [3]:
from sklearn.cross_validation import train_test_split
from sklearn.preprocessing import StandardScaler
In [4]:
X, y = df_wine.iloc[:, 1:].values, df_wine.iloc[:, 0].values
In [5]:
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0)
In [6]:
#first standardize data
sc = StandardScaler()
In [7]:
X_train_std = sc.fit_transform(X_train)
In [8]:
X_test_std = sc.transform(X_test)
In [9]:
import numpy as np
In [10]:
#Obtain covariance matrix
cov_mat = np.cov(X_train_std.T)
#find eigenvalues/vectors
eigen_vals, eigen_vecs = np.linalg.eig(cov_mat)
print('Eigenvalues \n%s' % eigen_vals)
In [11]:
tot = sum(eigen_vals)
In [12]:
#Plot explained variance
var_exp = [(i/tot) for i in sorted(eigen_vals, reverse=True)]
cum_var_exp = np.cumsum(var_exp)
plt.bar(range(1,14), var_exp, alpha=0.5, align='center', label='individual explained variance')
plt.step(range(1,14), cum_var_exp, where='mid', label='cumulative explained variance')
plt.ylabel('Explained variance ratio')
plt.xlabel('Principal components')
plt.legend(loc='best')
plt.show()
In [13]:
#Sort eigenpairs by descending order of the eigenvalues
eigen_pairs = [(np.abs(eigen_vals[i]), eigen_vecs[:,i]) for i in range(len(eigen_vals))]
eigen_pairs.sort(reverse=True)
In [14]:
#use two eigenvectors that corresepond to two largest e.values to create projection matrix W
w = np.hstack((eigen_pairs[0][1][:, np.newaxis], eigen_pairs[1][1][:, np.newaxis]))
print('Matrix W:\n', w)
In [15]:
#transform a sample x onto PCA subspace (x' = xW)
X_train_std[0].dot(w)
Out[15]:
In [16]:
#transform entire training dataset (X' = XW)
X_train_pca = X_train_std.dot(w)
In [17]:
colors = ['r','b','g']
markers = ['s','x','o']
for l,c,m in zip(np.unique(y_train), colors, markers):
plt.scatter(X_train_pca[y_train==l, 0], X_train_pca[y_train==l, 1], c=c, label=l, marker=m)
plt.xlabel('PC 1')
plt.ylabel('PC 2')
plt.legend(loc='lower left')
plt.show()
In [18]:
from matplotlib.colors import ListedColormap
In [19]:
def plot_decision_regions(X,y, classifier, resolution=0.02):
#setup marker generator and color map
markers = ('s', 'x', 'o', '^', 'v')
colors = ('red', 'blue', 'lightgreen', 'gray', 'cyan')
cmap = ListedColormap(colors[:len(np.unique(y))])
#plot the decision surface
x1_min, x1_max = X[:, 0].min() - 1, X[:, 0].max() + 1
x2_min, x2_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx1, xx2 = np.meshgrid(np.arange(x1_min, x1_max, resolution), np.arange(x2_min, x2_max, resolution))
Z = classifier.predict(np.array([xx1.ravel(), xx2.ravel()]).T)
Z = Z.reshape(xx1.shape)
plt.contourf(xx1, xx2, Z, alpha=0.4, cmap=cmap)
plt.xlim(xx1.min(), xx1.max())
plt.ylim(xx2.min(), xx2.max())
#plot class samples
for idx, cl in enumerate(np.unique(y)):
plt.scatter(x=X[y == cl, 0], y=X[y == cl, 1], alpha=0.8, c=cmap(idx), marker=markers[idx], label=cl)
In [20]:
from sklearn.linear_model import LogisticRegression
from sklearn.decomposition import PCA
In [21]:
pca = PCA(n_components=2)
In [22]:
lr = LogisticRegression()
In [23]:
X_train_pca = pca.fit_transform(X_train_std)
In [24]:
X_test_pca = pca.transform(X_test_std)
In [25]:
lr.fit(X_train_pca, y_train)
Out[25]:
In [26]:
plot_decision_regions(X_train_pca, y_train, classifier=lr)
plt.xlabel('PC1')
plt.ylabel('PC2')
plt.legend(loc='lower left')
plt.show()
In [27]:
plot_decision_regions(X_test_pca, y_test, classifier=lr)
plt.xlabel('PC1')
plt.ylabel('PC2')
plt.legend(loc='lower left')
plt.show()
In [28]:
#initialize PCA class with n_components parameter set to None in order to access explained_variance_ratio:
pca = PCA(n_components=None)
X_train_pca = pca.fit_transform(X_train_std)
pca.explained_variance_ratio_
Out[28]:
In [29]:
#compute mean vector for each class
np.set_printoptions(precision=4)
mean_vecs = []
for label in range(1,4):
mean_vecs.append(np.mean(X_train_std[y_train==label], axis=0))
print('MV %s: %s\n' %(label, mean_vecs[label-1]))
In [30]:
d = 13 # number of features
S_W = np.zeros((d, d))
for label, mv in zip(range(1, 4), mean_vecs):
class_scatter = np.zeros((d, d)) # scatter matrix for each class
for row in X_train_std[y_train == label]:
row, mv = row.reshape(d, 1), mv.reshape(d, 1) # make column vectors
class_scatter += (row - mv).dot((row - mv).T)
S_W += class_scatter # sum class scatter matrices
print('Within-class scatter matrix: %sx%s' % (S_W.shape[0], S_W.shape[1]))
In [31]:
print('Class label distribution: %s' % np.bincount(y_train)[1:])
In [32]:
#scale scatter matrices first
d = 13 # number of features
S_W = np.zeros((d, d))
for label, mv in zip(range(1, 4), mean_vecs):
class_scatter = np.cov(X_train_std[y_train == label].T)
S_W += class_scatter
print('Scaled within-class scatter matrix: %sx%s' % (S_W.shape[0],
S_W.shape[1]))
In [33]:
#compute between-class scatter matrix:
mean_overall = np.mean(X_train_std, axis=0)
d = 13 # number of features
S_B = np.zeros((d, d))
for i, mean_vec in enumerate(mean_vecs):
n = X_train[y_train == i + 1, :].shape[0]
mean_vec = mean_vec.reshape(d, 1) # make column vector
mean_overall = mean_overall.reshape(d, 1) # make column vector
S_B += n * (mean_vec - mean_overall).dot((mean_vec - mean_overall).T)
print('Between-class scatter matrix: %sx%s' % (S_B.shape[0], S_B.shape[1]))
In [34]:
#find e.pairs of (Sw)-1(Sb)
eigen_vals, eigen_vecs = np.linalg.eig(np.linalg.inv(S_W).dot(S_B))
In [35]:
eigen_pairs = [(np.abs(eigen_vals[i]), eigen_vecs[:,i]) for i in range(len(eigen_vals))]
In [36]:
eigen_pairs = sorted(eigen_pairs, key=lambda k: k[0], reverse=True)
print('Eigenvalues in decreasing order:\n')
for eigen_val in eigen_pairs:
print(eigen_val[0])
In [37]:
#plot 'discriminability' of linear discriminants
tot = sum(eigen_vals.real)
discr = [(i / tot) for i in sorted(eigen_vals.real, reverse=True)]
cum_discr = np.cumsum(discr)
plt.bar(range(1, 14), discr, alpha=0.5, align='center', label='individual "discriminability"')
plt.step(range(1, 14), cum_discr, where='mid', label='cumulative "discriminability"')
plt.ylabel('"discriminability" ratio')
plt.xlabel('Linear Discriminants')
plt.ylim([-0.1, 1.1])
plt.legend(loc='best')
plt.show()
In [38]:
#stack two most discriminative eigenvector columns to create proj matrix W:
w = np.hstack((eigen_pairs[0][1][:, np.newaxis].real, eigen_pairs[1][1][:, np.newaxis].real))
print('Matrix W:\n', w)
In [39]:
#project samples onto new feature space
X_train_lda = X_train_std.dot(w)
In [40]:
colors = ['r', 'b', 'g']
markers = ['s', 'x', 'o']
for l, c, m in zip(np.unique(y_train), colors, markers):
plt.scatter(X_train_lda[y_train==l, 0]*(-1), X_train_lda[y_train==l, 1]*(-1), c=c, label=l, marker=m)
plt.xlabel('LD 1')
plt.ylabel('LD 2')
plt.legend(loc='lower right')
plt.show()
In [41]:
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA
In [42]:
lda = LDA(n_components=2)
In [43]:
X_train_lda = lda.fit_transform(X_train_std, y_train)
In [44]:
#see how logistic regression handles lower-dimensional training set
lr = LogisticRegression()
lr.fit(X_train_lda, y_train)
Out[44]:
In [45]:
plot_decision_regions(X_train_lda, y_train, classifier=lr)
plt.xlabel('LD 1')
plt.ylabel('LD 2')
plt.legend(loc='lower left')
plt.show()
In [46]:
X_test_lda = lda.transform(X_test_std)
In [47]:
plot_decision_regions(X_test_lda,y_test, classifier=lr)
plt.xlabel('LD 1')
plt.ylabel('LD 2')
plt.legend(loc='lower left')
plt.show()
In [48]:
from scipy.spatial.distance import pdist, squareform
from scipy import exp
from scipy.linalg import eigh
In [49]:
def rbf_kernel_pca(X, gamma, n_components):
"""
RBF kernel PCA implementation.
Parameters
-----------
X: {NumPy ndarray}, shape = [n_samples, n_features]
gamma: float, Tuning parameter of RBF kernel
n_components: int, Number of principal components to return
Returns
-----------
X_pc: {NumPy ndarray}, shape = [n_samples, k_features], Projected dataset
"""
#Calculate pairwise squared Euclidean distances
sq_dists = pdist(X, 'sqeuclidean')
#convert pairwise distances into square matrix
mat_sq_dists = squareform(sq_dists)
#Compute symmetric kernel matrix
K = exp(-gamma * mat_sq_dists)
#Center kernel matrix
N = K.shape[0]
one_n = np.ones((N, N)) / N
K = K - one_n.dot(K) - K.dot(one_n) + one_n.dot(K).dot(one_n)
#Obtain eigenpairs from centered kernel matrix
eigvals, eigvecs = eigh(K)
# Collect top k eigenvectors(projected samples)
X_pc = np.column_stack((eigvecs[:, -i] for i in range(1, n_components + 1)))
return X_pc
In [50]:
# EXAMPLE 1 : separate half-moons
from sklearn.datasets import make_moons
X, y = make_moons(n_samples=100, random_state=123)
In [51]:
plt.scatter(X[y==0,0], X[y==0, 1], color='red', marker='^', alpha=0.5)
plt.scatter(X[y==1,0], X[y==1, 1], color='blue', marker='o', alpha=0.5)
plt.show()
In [52]:
#Clearly not linearly separable
#What does standard PCA look like?
scikit_pca = PCA(n_components=2)
In [53]:
X_spca = scikit_pca.fit_transform(X)
In [54]:
fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(7,3))
ax[0].scatter(X_spca[y==0, 0], X_spca[y==0, 1], color='red', marker='^', alpha=0.5)
ax[0].scatter(X_spca[y==1, 0], X_spca[y==1, 1], color='blue', marker='o', alpha=0.5)
ax[1].scatter(X_spca[y==0, 0], np.zeros((50,1))+0.02, color='red', marker='^', alpha=0.5)
ax[1].scatter(X_spca[y==1, 0], np.zeros((50, 1))-0.02, color='blue', marker='o', alpha=0.5)
ax[0].set_xlabel('PC1')
ax[0].set_ylabel('PC2')
ax[1].set_ylim([-1, 1])
ax[1].set_yticks([])
ax[1].set_xlabel('PC1')
plt.show()
In [55]:
#Now try our kernel PCA
from matplotlib.ticker import FormatStrFormatter
X_kpca = rbf_kernel_pca(X, gamma=15, n_components=2)
In [56]:
fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(7,3))
ax[0].scatter(X_kpca[y==0, 0], X_kpca[y==0, 1], color='red', marker='^', alpha=0.5)
ax[0].scatter(X_kpca[y==1, 0], X_kpca[y==1, 1], color='blue', marker='o', alpha=0.5)
ax[1].scatter(X_kpca[y==0, 0], np.zeros((50,1)) + 0.02, color='red', marker='^', alpha=0.5)
ax[1].scatter(X_kpca[y==1, 0], np.zeros((50,1)) - 0.02, color='blue', marker='o', alpha=0.5)
ax[0].set_xlabel('PC1')
ax[0].set_ylabel('PC2')
ax[1].set_ylim([-1, 1])
ax[1].set_yticks([])
ax[1].set_xlabel('PC1')
ax[0].xaxis.set_major_formatter(FormatStrFormatter('%0.1f'))
ax[1].xaxis.set_major_formatter(FormatStrFormatter('%0.1f'))
plt.show()
In [57]:
## EXAMPLE 2: separate concentric circles
from sklearn.datasets import make_circles
X,y = make_circles(n_samples=1000, random_state=123, noise=0.1, factor=0.2)
In [58]:
plt.scatter(X[y==0, 0], X[y==0, 1], color='red', marker='^', alpha=0.5)
plt.scatter(X[y==1, 0], X[y==1, 1], color='blue', marker='o', alpha=0.5)
plt.show()
In [59]:
#with std PCA
scikit_pca = PCA(n_components=2)
X_spca = scikit_pca.fit_transform(X)
In [60]:
fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(7,3))
ax[0].scatter(X_spca[y==0, 0], X_spca[y==0, 1], color='red', marker='^', alpha=0.5)
ax[0].scatter(X_spca[y==1, 0], X_spca[y==1, 1], color='blue', marker='o', alpha=0.5)
ax[1].scatter(X_spca[y==0, 0], np.zeros((500,1))+0.02, color='red', marker='^', alpha=0.5)
ax[1].scatter(X_spca[y==1, 0], np.zeros((500, 1))-0.02, color='blue', marker='o', alpha=0.5)
ax[0].set_xlabel('PC1')
ax[0].set_ylabel('PC2')
ax[1].set_ylim([-1, 1])
ax[1].set_yticks([])
ax[1].set_xlabel('PC1')
plt.show()
In [61]:
#with RBF kernel
X_kpca = rbf_kernel_pca(X, gamma=15, n_components=2)
In [62]:
fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(7,3))
ax[0].scatter(X_kpca[y==0, 0], X_kpca[y==0, 1], color='red', marker='^', alpha=0.5)
ax[0].scatter(X_kpca[y==1, 0], X_kpca[y==1, 1], color='blue', marker='o', alpha=0.5)
ax[1].scatter(X_kpca[y==0, 0], np.zeros((500,1)) + 0.02, color='red', marker='^', alpha=0.5)
ax[1].scatter(X_kpca[y==1, 0], np.zeros((500,1)) - 0.02, color='blue', marker='o', alpha=0.5)
ax[0].set_xlabel('PC1')
ax[0].set_ylabel('PC2')
ax[1].set_ylim([-1, 1])
ax[1].set_yticks([])
ax[1].set_xlabel('PC1')
plt.show()
In [63]:
#Projecting data points not part of training dataset
#modify function to return eigenvalues of kernel matrix
def rbf_kernel_pca(X, gamma, n_components):
"""
RBF kernel PCA implementation.
Parameters
-----------
X: {NumPy ndarray}, shape = [n_samples, n_features]
gamma: float, Tuning parameter of RBF kernel
n_components: int, Number of principal components to return
Returns
-----------
X_pc: {NumPy ndarray}, shape = [n_samples, k_features], Projected dataset
lambdas: list, Eigenvalues
"""
#Calculate pairwise squared Euclidean distances
sq_dists = pdist(X, 'sqeuclidean')
#convert pairwise distances into square matrix
mat_sq_dists = squareform(sq_dists)
#Compute symmetric kernel matrix
K = exp(-gamma * mat_sq_dists)
#Center kernel matrix
N = K.shape[0]
one_n = np.ones((N, N)) / N
K = K - one_n.dot(K) - K.dot(one_n) + one_n.dot(K).dot(one_n)
#Obtain eigenpairs from centered kernel matrix
eigvals, eigvecs = eigh(K)
# Collect top k eigenvectors(projected samples)
alphas = np.column_stack((eigvecs[:, -i] for i in range(1, n_components + 1)))
#Collect corresponding eigenvalues
lambdas = [eigvals[-i] for i in range(1, n_components + 1)]
return alphas, lambdas
In [64]:
X, y = make_moons(n_samples=100, random_state=123)
In [65]:
alphas, lambdas= rbf_kernel_pca(X, gamma=15, n_components=1)
In [66]:
#test with projecting 26th datapoint
x_new = X[25]
x_new
Out[66]:
In [67]:
x_proj = alphas[25] #original projection
x_proj
Out[67]:
In [69]:
def project_x(x_new, X, gamma, alphas, lambdas):
pair_dist = np.array([np.sum((x_new - row)**2) for row in X])
k = np.exp(-gamma * pair_dist)
return k.dot(alphas / lambdas)
In [70]:
#reproduce original projection
x_reproj = project_x(x_new, X, gamma=15, alphas=alphas, lambdas=lambdas)
x_reproj
Out[70]:
In [71]:
#visualize projection on first principal component
plt.scatter(alphas[y==0, 0], np.zeros((50)), color='red', marker='^', alpha=0.5)
plt.scatter(alphas[y==1, 0], np.zeros((50)), color='blue', marker='o', alpha=0.5)
plt.scatter(x_proj, 0, color='black', label='original projection of point X[25]', marker='^', s=100)
plt.scatter(x_reproj, 0, color='green', label='remapped point X[25]', marker='x', s=500)
plt.legend(scatterpoints=1)
plt.show()
In [72]:
from sklearn.decomposition import KernelPCA
In [73]:
X, y = make_moons(n_samples=100, random_state=123)
scikit_kpca = KernelPCA(n_components=2, kernel='rbf', gamma=15)
In [74]:
X_skernpca = scikit_kpca.fit_transform(X)
In [75]:
plt.scatter(X_skernpca[y==0, 0], X_skernpca[y==0, 1], color='red', marker='^', alpha=0.5)
plt.scatter(X_skernpca[y==1, 0], X_skernpca[y==1, 1], color='blue', marker='o', alpha=0.5)
plt.xlabel('PC1')
plt.ylabel('PC2')
plt.show()
In [ ]: