RT plot (0.0, 299.13893360513003)
1495.69466803
994.676795832
slice shape (61, 1342)
y shape (61,)
0.0% done! 3.3210580349s elapsed
20.0% done! 34.1463060379s elapsed
40.0% done! 70.3792078495s elapsed
60.0% done! 102.011008978s elapsed
80.0% done! 138.818625927s elapsed
--------------------------------------------------NEXT ROUND--------------------------------------------------
RT plot (149.56946680256502, 448.70840040769508)
1495.69466803
994.676795832
slice shape (61, 311)
y shape (61,)
0.0% done! 4.2364718914s elapsed
---------------------------------------------------------------------------
KeyboardInterrupt Traceback (most recent call last)
<ipython-input-10-853f9147c7ba> in <module>()
25 rtwin.sliding_rt_window_aucs(X_df_filled_mzrt, y, sliding_window, not_samples,
26 rf_trees=rf_trees, n_iter=n_iter, test_size=test_size,
---> 27 output_path=output_path)
/home/irockafe/miniconda2/envs/isaac_revo_healthcare/lib/python2.7/site-packages/util/rt_window_prediction.pyc in sliding_rt_window_aucs(X_df, y, sliding_window, not_samples, rf_trees, n_iter, test_size, output_path)
301 '/mzrt_window_%i.pdf' % i),
302 roc_path=(output_path +
--> 303 'roc_window_%i.pdf' % i))
304 # add aucs vals to array
305 all_aucs[i] = auc_vals
/home/irockafe/miniconda2/envs/isaac_revo_healthcare/lib/python2.7/site-packages/util/rt_window_prediction.pyc in slice_and_predict(df, y, rt_window, not_samples, rf_estimators, n_iter, test_size, random_state, mzrt_path, roc_path)
257 tpr_vals, auc_vals, mean_fpr = roc_curve_cv(X_slice, y, clf_rf,
258 cross_val_rf,
--> 259 save=True, path=roc_path)
260 return auc_vals
261
/home/irockafe/miniconda2/envs/isaac_revo_healthcare/lib/python2.7/site-packages/util/rt_window_prediction.pyc in roc_curve_cv(X, y, clf, cross_val, path, save, plot)
35 # Get the false-positive and true-positive rate
36 for i, (train, test) in enumerate(cross_val):
---> 37 clf.fit(X[train], y[train])
38 y_pred = clf.predict_proba(X[test])[:, 1]
39
/home/irockafe/miniconda2/envs/isaac_revo_healthcare/lib/python2.7/site-packages/sklearn/ensemble/forest.pyc in fit(self, X, y, sample_weight)
325 t, self, X, y, sample_weight, i, len(trees),
326 verbose=self.verbose, class_weight=self.class_weight)
--> 327 for i, t in enumerate(trees))
328
329 # Collect newly grown trees
/home/irockafe/miniconda2/envs/isaac_revo_healthcare/lib/python2.7/site-packages/sklearn/externals/joblib/parallel.pyc in __call__(self, iterable)
777 # was dispatched. In particular this covers the edge
778 # case of Parallel used with an exhausted iterator.
--> 779 while self.dispatch_one_batch(iterator):
780 self._iterating = True
781 else:
/home/irockafe/miniconda2/envs/isaac_revo_healthcare/lib/python2.7/site-packages/sklearn/externals/joblib/parallel.pyc in dispatch_one_batch(self, iterator)
623 return False
624 else:
--> 625 self._dispatch(tasks)
626 return True
627
/home/irockafe/miniconda2/envs/isaac_revo_healthcare/lib/python2.7/site-packages/sklearn/externals/joblib/parallel.pyc in _dispatch(self, batch)
586 dispatch_timestamp = time.time()
587 cb = BatchCompletionCallBack(dispatch_timestamp, len(batch), self)
--> 588 job = self._backend.apply_async(batch, callback=cb)
589 self._jobs.append(job)
590
/home/irockafe/miniconda2/envs/isaac_revo_healthcare/lib/python2.7/site-packages/sklearn/externals/joblib/_parallel_backends.pyc in apply_async(self, func, callback)
109 def apply_async(self, func, callback=None):
110 """Schedule a func to be run"""
--> 111 result = ImmediateResult(func)
112 if callback:
113 callback(result)
/home/irockafe/miniconda2/envs/isaac_revo_healthcare/lib/python2.7/site-packages/sklearn/externals/joblib/_parallel_backends.pyc in __init__(self, batch)
330 # Don't delay the application, to avoid keeping the input
331 # arguments in memory
--> 332 self.results = batch()
333
334 def get(self):
/home/irockafe/miniconda2/envs/isaac_revo_healthcare/lib/python2.7/site-packages/sklearn/externals/joblib/parallel.pyc in __call__(self)
129
130 def __call__(self):
--> 131 return [func(*args, **kwargs) for func, args, kwargs in self.items]
132
133 def __len__(self):
/home/irockafe/miniconda2/envs/isaac_revo_healthcare/lib/python2.7/site-packages/sklearn/ensemble/forest.pyc in _parallel_build_trees(tree, forest, X, y, sample_weight, tree_idx, n_trees, verbose, class_weight)
118 curr_sample_weight *= compute_sample_weight('balanced', y, indices)
119
--> 120 tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False)
121 else:
122 tree.fit(X, y, sample_weight=sample_weight, check_input=False)
/home/irockafe/miniconda2/envs/isaac_revo_healthcare/lib/python2.7/site-packages/sklearn/tree/tree.pyc in fit(self, X, y, sample_weight, check_input, X_idx_sorted)
788 sample_weight=sample_weight,
789 check_input=check_input,
--> 790 X_idx_sorted=X_idx_sorted)
791 return self
792
/home/irockafe/miniconda2/envs/isaac_revo_healthcare/lib/python2.7/site-packages/sklearn/tree/tree.pyc in fit(self, X, y, sample_weight, check_input, X_idx_sorted)
360 min_impurity_split)
361
--> 362 builder.build(self.tree_, X, y, sample_weight, X_idx_sorted)
363
364 if self.n_outputs_ == 1:
KeyboardInterrupt: