Licensed to the Apache Software Foundation (ASF) under one or more contributor license agreements; and to You under the Apache License, Version 2.0.
Typically, the life cycle of a layer instance includes:
construct layer without input_sample_shapes, goto 2; or,
construct layer with input_sample_shapes, goto 3;
In [1]:
from singa import tensor, device, layer
#help(layer.Layer)
layer.engine='singacpp'
In [2]:
from singa.layer import Dense, Conv2D, MaxPooling2D, Activation, BatchNormalization, Softmax
In [3]:
dense = Dense('dense', 3, input_sample_shape=(2,))
#dense.param_names()
w, b = dense.param_values()
print(w.shape, b.shape)
In [4]:
w.gaussian(0, 0.1)
b.set_value(0)
In [5]:
x = tensor.Tensor((2,2))
x.uniform(-1, 1)
y = dense.forward(True, x)
tensor.to_numpy(y)
Out[5]:
In [6]:
gx, [gw, gb] = dense.backward(True, y)
print(gx.shape, gw.shape, gb.shape)
In [7]:
conv = Conv2D('conv', 4, 3, 1, input_sample_shape=(3, 6, 6))
print(conv.get_output_sample_shape())
In [8]:
pool = MaxPooling2D('pool', 3, 2, input_sample_shape=(4, 6, 6))
print(pool.get_output_sample_shape())
In [9]:
from singa.layer import Split, Merge, Slice, Concat
In [10]:
split = Split('split', 2, input_sample_shape=(4, 6, 6))
print(split.get_output_sample_shape())
In [11]:
merge = Merge('merge', input_sample_shape=(4, 6, 6))
print(merge.get_output_sample_shape())
In [12]:
sli = Slice('slice', 1, [2], input_sample_shape=(4, 6, 6))
print(sli.get_output_sample_shape())
In [13]:
concat = Concat('concat', 1, input_sample_shapes=[(3, 6, 6), (1, 6, 6)])
print(concat.get_output_sample_shape())
In [14]:
from singa import metric
import numpy as np
x = tensor.Tensor((3, 5))
x.uniform(0, 1) # randomly genearte the prediction activation
x = tensor.softmax(x) # normalize the prediction into probabilities
print(tensor.to_numpy(x))
y = tensor.from_numpy(np.array([0, 1, 3], dtype=np.int)) # set the truth
f = metric.Accuracy()
acc = f.evaluate(x, y) # averaged accuracy over all 3 samples in x
print(acc)
In [15]:
from singa import loss
x = tensor.Tensor((3, 5))
x.uniform(0, 1) # randomly genearte the prediction activation
y = tensor.from_numpy(np.array([0, 1, 3], dtype=np.int)) # set the truth
f = loss.SoftmaxCrossEntropy()
l = f.forward(True, x, y) # l is tensor with 3 loss values
g = f.backward() # g is a tensor containing all gradients of x w.r.t l
print(l.l1())
print(tensor.to_numpy(g))
In [16]:
from singa import optimizer
sgd = optimizer.SGD(lr=0.01, momentum=0.9, weight_decay=1e-4)
p = tensor.Tensor((3,5))
p.uniform(-1, 1)
g = tensor.Tensor((3,5))
g.gaussian(0, 0.01)
sgd.apply(1, g, p, 'param') # use the global lr=0.1 for epoch 1
sgd.apply_with_lr(2, 0.03, g, p, 'param') # use lr=0.03 for epoch 2
Out[16]:
In [17]:
from singa import net as ffnet
layer.engine = 'singacpp'
net = ffnet.FeedForwardNet(loss.SoftmaxCrossEntropy(), metric.Accuracy())
net.add(layer.Conv2D('conv1', 32, 5, 1, input_sample_shape=(3,32,32,)))
net.add(layer.Activation('relu1'))
net.add(layer.MaxPooling2D('pool1', 3, 2))
net.add(layer.Flatten('flat'))
net.add(layer.Dense('dense', 10))
# init parameters
for p in net.param_values():
if len(p.shape) == 0:
p.set_value(0)
else:
p.gaussian(0, 0.01)
print(net.param_names())
In [18]:
layer.engine = 'cudnn'
net = ffnet.FeedForwardNet(loss.SoftmaxCrossEntropy(), metric.Accuracy())
net.add(layer.Conv2D('conv1', 32, 5, 1, input_sample_shape=(3,32,32,)))
net.add(layer.Activation('relu1'))
net.add(layer.MaxPooling2D('pool1', 3, 2))
net.add(layer.Flatten('flat'))
net.add(layer.Dense('dense', 10))
# init parameters
for p in net.param_values():
if len(p.shape) == 0:
p.set_value(0)
else:
p.gaussian(0, 0.01)
# move net onto gpu
dev = device.create_cuda_gpu()
net.to_device(dev)
In [ ]: