Melting Curves


In [ ]:
Todo:
    
Collected:
WATER.FLD:631:MLW melting line model of Wagner et al. (2010). (IAPWS)
AMMONIA.FLD:494:ML1 melting line model of Haar and Gallagher (1978).
HELIUM.FLD:501:ML1 melting line model of McCarty and Arp (1990). From Adv. Cryo. Eng.
        
Unpublished:
HYDROGEN, NEON

Simple Simon Curves

Simon curves give the melting curve pressure in a form like

$$p=p_0+a\left[\left(\frac{T}{T_0}\right)^c-1\right]$$

The values here are from Larry E. Reeves, Gene J. Scott, and Stanley E. Babb, Jr., "Melting Curves of Pressure-Transmitting Fluids", The Journal Of Chemical Physics, v. 40, n. 12, 15 June 1964.

Fluid Formula $T_0$ [K] a [Pa] c $p_0$ [Pa]
Propane $C_3H_8$ 85.3 7.180e8 1.283 0.0
n-Butane n-$C_4H_{10}$ 134.5 3.634e8 2.210 0.0
n-Pentane n-$C_5H_{12}$ 143.5 6.600e8 1.649 0.0
Isobutane-I i-$C_4H_{10}$-I 128.2 4.246e8 2.478 0.0
Isobutane-II i-$C_4H_{10}$-II 160.2 7.942e8 1.571 3.265e8
Isopentane i-$C_5H_{12}$ 112.5 5.916e8 1.563 0.0
Ethylene $C_2H_{4}$ 103.8 3.275e8 1.811 0.0
Propylene-I $C_3H_{6}$-I 86.0 3.196e8 2.821 0.0
Propylene-II $C_3H_{6}$-II 109.6 3.064e8 3.871 4.450e8
Refrigerant R12 $CCl_{2}F_2$ 117.9 3.288e8 2.231 0.0

Values from Penoncello, IJT, 1995 :

Fluid Formula $T_0$ [K] a [Pa] c $p_0$ [Pa]
Cyclohexane $C_6H_{12}$ 279.7 383.4e6 1.41 0.0
Krypton and Xenon

For Krypton and Xenon, the form of the correlation from Michels and Prins, Physica, 1962 is $$\log_{10}(p+A) = C\log_{10} T+B$$

Start with the Reeves form: $$p=p_0+a\left[\left(\frac{T}{T_0}\right)^c-1\right]$$ Left hand side $$p-p_0+a=a\left(\frac{T}{T_0}\right)^c$$ log base 10 both sides, $T_0$ is 1 $$\log_{10}(p-p_0+a)=c\log_{10}T+\log_{10}a$$

Thus from Michels, $a = 10^{B}$, $c = C$, $p_0 = A-10^B$. $p_0$ and $a$ must be multiplied by 101325 to convert to Pa

Carbon Monoxide

For carbon monoxide, the curve comes from Barreiros, JCT, 1982: $$p/MPa = -142.941+0.0195608(T/K)^{2.10747}$$ or in Pa $$p/Pa = -142941000+19560.8(T/K)^{2.10747}$$ with $T_0$ is 1, Reeves form is $$p=p_0+a\left(T^c-1\right)=p_0-a+aT^c$$

Ammonia

For ammonia, the melting line comes from Haar and Gallagher, 1978 $$\theta = 195.48\exp(4\times 10^{-5}\cdot p/atm )$$ where $\theta$ is the temperature in K or alternatively $$p/Pa = \frac{101325}{4\times 10^{-5}}\ln\frac{T/K}{195.48} = 2533125000\ln\frac{T/K}{195.48}$$

Oxygen and Parahydrogen

For oxygen and parahydrogen, melting curves of the form $$p = A + BT^C$$ with T in K, p in MPa. With $T_0$ of 1, Reeves form is $$p=p_0-a+aT^c$$ Thus $a=B$, $c = C$, $p_0=A+B$, multiply A and B by 1e6 as given

Expanded Simon Curves

$$\frac{p_m}{p_t} - 1= \sum_i{a_i\left[\left(\frac{T}{T_c}\right)^{t_i}-1\right]}$$
Fluid Reference $T_t$ [K] $T_{max}$ [K] $p_t$ [Pa] $a_1$ $t_1$ $a_2$ $t_2$ $a_3$ $t_3$
Argon Tegeler, 1999 83.8058 ?? 68891 -7476.2665 1.05 9959.0613 1.275
Ethane Buecker and Wagner, 2006 90.368 195 1.14 2.23626315e8 1.0 1.05262374e8 2.55
n-Butane Buecker and Wagner, 2006 134.895 ?? 0.653 5.585582364e8 2.206
Isobutane Buecker and Wagner, 2006 113.73 ?? 0.0219 1.953637130e9 6.12
Nitrogen Span, 2000 63.151 ?? 12523 12798.61 1.78963
Fluorine de Reuck, 1990 53.4811 ?? 252 988043.478261 2.1845
Methane Setzmann, 1991 90.6941 ?? 11696 2.47568e4 1.85 -7.36602e3 2.1
Ethylene-I Smukala, 2000 103.989 110.369 122.65 2947001.84 2.045
Ethylene-II Smukala, 2000 110.369 ??? 46.8e6 6.82693421 1.089
$$\frac{p_m}{p_t} - 1= \sum_i{a_i\left[\left(\frac{T}{T_c}\right)-1\right]^{t_i}}$$
Fluid Reference $T_t$ [K] $T_{max}$ [K] $p_t$ [Pa] $a_1$ $t_1$ $a_2$ $t_2$ $a_3$ $t_3$
Methanol de Reuck, 1993 175.61 ?? 0.187 5.330770e9 1 4.524780e9 3/2 3.888861e10 4
Carbon dioxide (CO2) Span, 1996 216.592 ?? 51795 1955.5390 1 2055.4593 2

Water


In [ ]:
Function of Density
$$\rho/\rho_{0}=a_i\left(\frac{T}{T_0}-1\right)^{c_i}$$

ln of both sides $$\ln(\rho/\rho_{0})=c_i\ln\left(\frac{T}{T_0}-1\right)+\ln a_i$$