In [ ]:
Todo:
Collected:
WATER.FLD:631:MLW melting line model of Wagner et al. (2010). (IAPWS)
AMMONIA.FLD:494:ML1 melting line model of Haar and Gallagher (1978).
HELIUM.FLD:501:ML1 melting line model of McCarty and Arp (1990). From Adv. Cryo. Eng.
Unpublished:
HYDROGEN, NEON
Simon curves give the melting curve pressure in a form like
$$p=p_0+a\left[\left(\frac{T}{T_0}\right)^c-1\right]$$The values here are from Larry E. Reeves, Gene J. Scott, and Stanley E. Babb, Jr., "Melting Curves of Pressure-Transmitting Fluids", The Journal Of Chemical Physics, v. 40, n. 12, 15 June 1964.
Fluid | Formula | $T_0$ [K] | a [Pa] | c | $p_0$ [Pa] |
---|---|---|---|---|---|
Propane | $C_3H_8$ | 85.3 | 7.180e8 | 1.283 | 0.0 |
n-Butane | n-$C_4H_{10}$ | 134.5 | 3.634e8 | 2.210 | 0.0 |
n-Pentane | n-$C_5H_{12}$ | 143.5 | 6.600e8 | 1.649 | 0.0 |
Isobutane-I | i-$C_4H_{10}$-I | 128.2 | 4.246e8 | 2.478 | 0.0 |
Isobutane-II | i-$C_4H_{10}$-II | 160.2 | 7.942e8 | 1.571 | 3.265e8 |
Isopentane | i-$C_5H_{12}$ | 112.5 | 5.916e8 | 1.563 | 0.0 |
Ethylene | $C_2H_{4}$ | 103.8 | 3.275e8 | 1.811 | 0.0 |
Propylene-I | $C_3H_{6}$-I | 86.0 | 3.196e8 | 2.821 | 0.0 |
Propylene-II | $C_3H_{6}$-II | 109.6 | 3.064e8 | 3.871 | 4.450e8 |
Refrigerant R12 | $CCl_{2}F_2$ | 117.9 | 3.288e8 | 2.231 | 0.0 |
Values from Penoncello, IJT, 1995 :
Fluid | Formula | $T_0$ [K] | a [Pa] | c | $p_0$ [Pa] |
---|---|---|---|---|---|
Cyclohexane | $C_6H_{12}$ | 279.7 | 383.4e6 | 1.41 | 0.0 |
For Krypton and Xenon, the form of the correlation from Michels and Prins, Physica, 1962 is $$\log_{10}(p+A) = C\log_{10} T+B$$
Start with the Reeves form: $$p=p_0+a\left[\left(\frac{T}{T_0}\right)^c-1\right]$$ Left hand side $$p-p_0+a=a\left(\frac{T}{T_0}\right)^c$$ log base 10 both sides, $T_0$ is 1 $$\log_{10}(p-p_0+a)=c\log_{10}T+\log_{10}a$$
Thus from Michels, $a = 10^{B}$, $c = C$, $p_0 = A-10^B$. $p_0$ and $a$ must be multiplied by 101325 to convert to Pa
For carbon monoxide, the curve comes from Barreiros, JCT, 1982: $$p/MPa = -142.941+0.0195608(T/K)^{2.10747}$$ or in Pa $$p/Pa = -142941000+19560.8(T/K)^{2.10747}$$ with $T_0$ is 1, Reeves form is $$p=p_0+a\left(T^c-1\right)=p_0-a+aT^c$$
For ammonia, the melting line comes from Haar and Gallagher, 1978 $$\theta = 195.48\exp(4\times 10^{-5}\cdot p/atm )$$ where $\theta$ is the temperature in K or alternatively $$p/Pa = \frac{101325}{4\times 10^{-5}}\ln\frac{T/K}{195.48} = 2533125000\ln\frac{T/K}{195.48}$$
For oxygen and parahydrogen, melting curves of the form $$p = A + BT^C$$ with T in K, p in MPa. With $T_0$ of 1, Reeves form is $$p=p_0-a+aT^c$$ Thus $a=B$, $c = C$, $p_0=A+B$, multiply A and B by 1e6 as given
Fluid | Reference | $T_t$ [K] | $T_{max}$ [K] | $p_t$ [Pa] | $a_1$ | $t_1$ | $a_2$ | $t_2$ | $a_3$ | $t_3$ |
---|---|---|---|---|---|---|---|---|---|---|
Argon | Tegeler, 1999 | 83.8058 | ?? | 68891 | -7476.2665 | 1.05 | 9959.0613 | 1.275 | ||
Ethane | Buecker and Wagner, 2006 | 90.368 | 195 | 1.14 | 2.23626315e8 | 1.0 | 1.05262374e8 | 2.55 | ||
n-Butane | Buecker and Wagner, 2006 | 134.895 | ?? | 0.653 | 5.585582364e8 | 2.206 | ||||
Isobutane | Buecker and Wagner, 2006 | 113.73 | ?? | 0.0219 | 1.953637130e9 | 6.12 | ||||
Nitrogen | Span, 2000 | 63.151 | ?? | 12523 | 12798.61 | 1.78963 | ||||
Fluorine | de Reuck, 1990 | 53.4811 | ?? | 252 | 988043.478261 | 2.1845 | ||||
Methane | Setzmann, 1991 | 90.6941 | ?? | 11696 | 2.47568e4 | 1.85 | -7.36602e3 | 2.1 | ||
Ethylene-I | Smukala, 2000 | 103.989 | 110.369 | 122.65 | 2947001.84 | 2.045 | ||||
Ethylene-II | Smukala, 2000 | 110.369 | ??? | 46.8e6 | 6.82693421 | 1.089 |
Fluid | Reference | $T_t$ [K] | $T_{max}$ [K] | $p_t$ [Pa] | $a_1$ | $t_1$ | $a_2$ | $t_2$ | $a_3$ | $t_3$ |
---|---|---|---|---|---|---|---|---|---|---|
Methanol | de Reuck, 1993 | 175.61 | ?? | 0.187 | 5.330770e9 | 1 | 4.524780e9 | 3/2 | 3.888861e10 | 4 |
Carbon dioxide (CO2) | Span, 1996 | 216.592 | ?? | 51795 | 1955.5390 | 1 | 2055.4593 | 2 |
For water, from http://www.iapws.org/relguide/MeltSub2011.pdf
In [ ]:
Function of Density
ln of both sides $$\ln(\rho/\rho_{0})=c_i\ln\left(\frac{T}{T_0}-1\right)+\ln a_i$$