In [1]:
# Basic python
print("Hello world!")
print(type("Hello world!"))
print(type("Hello world!")==str)
# dir()
In [2]:
# Built-in data types
# int
print(type(1))
# float
print(type(1.0))
# str
print(type("Hello World"))
# bool
print(type(False))
In [3]:
# Built-in data types: list
alist = [1, 2.0, "3"]
print(alist)
print(type(alist))
print(len(alist))
alist.append(4)
print(alist)
In [4]:
# how to access elements in a list
print(alist)
print(alist[1])
print(alist[::3])
print(alist[1:])
print(alist[:-1])
In [5]:
# Built-in data types: tuple
atuple = (1, 2.0, "3")
print(atuple)
print(type(atuple))
# how to accesse elements in a list
print(atuple[1])
print(atuple[::2])
print(atuple[1:])
print(atuple[:-1])
In [6]:
# Set & dictionary
aset = {1, 2.0, '3'}
print(aset)
adict = {1:"1.000", 2.0:"2.000", "3":"3.000"}
print(adict)
print(adict[1])
print(adict.keys(), adict.values())
In [7]:
# for
for i in range(10):
print(i)
In [8]:
# for
print(alist)
for _ in alist:
print(_)
In [9]:
# for
print(adict)
for k, v in adict.items():
print(k, v)
In [10]:
# if elif else
data = [-2, 0, 2]
for _ in data:
if _ < 0:
print(_)
elif _ == 0:
print("exactly 0")
else:
print(_)
In [11]:
# while
a = 10
while(a>0):
print(a)
a-=3
In [12]:
# how to import packages/modules
# 1
import numpy
print(numpy.sqrt(2))
# 2
import numpy as np
print(np.sqrt(2))
# 3
from numpy import sqrt
print(sqrt(2))
In [13]:
# numpy.ndarray VS list
x_list = [1,2,3]
import numpy as np
x_array = np.array(x_list)
print(x_list, x_list*2)
print(x_array, x_array*2)
In [14]:
# numpy
import numpy as np
a = np.arange(15).reshape(3, 5)
print("a = ", a)
print("the shape of a is ", a.shape)
print(a.ndim)
print(a.dtype.name)
print(a.itemsize)
print(a.size)
print(type(a))
In [18]:
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import rcParams
rcParams.update({'font.size':20})
fig = plt.figure(figsize=(10,10))
x = np.linspace(0, 6*np.pi, 100)
plt.plot(x, np.cos(x), 'r');
plt.plot(x, np.sin(x), 'b-');
# legend?
In [16]:
%pylab inline
rcParams.update({'font.size':20})
n_mc = 10000
x = np.random.rand(n_mc,)
y = np.random.rand(n_mc,)
theta = np.linspace(0., 0.5*np.pi, 100)
cx = np.cos(theta)
cy = np.sin(theta)
pi_est = 4.0*np.sum((x**2+y**2)<1.)/n_mc
fig = figure(figsize=(8,8))
ax = fig.add_subplot(111)
line, = plot(x, y, '.')
c, = plot(cx, cy, 'r-')
ax.set_xlabel("X")
ax.set_ylabel("Y")
ax.set_title("estimated pi = {:.10f}".format(pi_est));
In [17]:
print(1)
In [ ]:
In [ ]:
In [ ]: