In [1]:
import tensorflow as tf
In [4]:
x = tf.placeholder(tf.float32, shape=[784, 10]) # x belong to default_graph
g1 = tf.Graph()
with g1.as_default():
x1 = tf.constant([1., 2.]) # x1 belong to "g1"
with tf.Graph().as_default() as g2: # x2 belong to 'g2'
x2 = tf.placeholder(tf.float32, shape=[2, 2])
In [5]:
print (x.graph is tf.get_default_graph())
print (x1.graph is g1)
print (x2.graph is g2)
##---------
print (x.graph is g1)
print (x.graph is g2)
In [7]:
g1 = tf.Graph()
with g1.as_default():
c = tf.constant(10., name='c') ## outtest scope
print (c.op.name == 'c')
with g1.name_scope("scope_1") as scope_1: ## scope_1
scope1_c = tf.constant(10., name='c')
print (scope1_c.op.name == 'scope_1/c')
with g1.name_scope('scope_2') as scope_2: ## scope_2
scope2_c = tf.constant(20., name='c')
print (scope2_c.op.name == 'scope_2/c')
c1 = tf.constant(10., name='c') ## outtest scope
print (c1.op.name == 'c_1')
with g1.name_scope(scope_1): ## scope_1
scope1_c1 = tf.constant(10., name='c')
scope1_c2 = tf.constant(10., name='c')
print (scope1_c1.op.name == 'scope_1/c_1')
print (scope1_c2.op.name == 'scope_1/c_2')
with g1.name_scope('scope_11') as scope_11: ## scope_1/scope_11
scope11_c = tf.constant(40, name='c')
print (scope11_c.op.name == 'scope_1/scope_11/c')
with g1.name_scope(scope_2): ## scope_2
scope2_c1 = tf.constant(10., name='c')
print (scope2_c1.op.name == 'scope_2/c_1')
scope1_c3 = tf.constant(10., name='c') ## scope_1
print (scope1_c3.op.name == 'scope_1/c_3')
with g1.name_scope(""): ## outtest
c2 = tf.constant(10., name='c')
print (c2.op.name == 'c_2')
print (g1.get_all_collection_keys())
In [88]:
with tf.Graph().as_default() as g3:
input = basics.input_tensor(shape=[None, 784], name='input')
weights = basics.weights_tensor(shape=[784, 10], name='weights')
biases = basics.biases_tensor(shape=[10], name='biases')
z = tf.matmul(input, weights) + biases
print (weights.name, weights.dtype)
print (z.name, z.dtype)
print (z.value_index)
In [93]:
print (tf.GraphKeys)
In [ ]: