or:
$$ \int_a^b u(x)v'(x)\,dx = [u(x)v(x)]^b_a - \int_a^b u'(x) v(x)\,dx \\ = u(b)v(b) - u(a)v(a) - \int_a^b u'(x)v(x)\,dx $$Example: we want:
$$ I = \int \frac{\ln(x)}{x^2} \, dx $$We note that:
$$ \frac{d}{dx} \ln(x) = \frac{1}{x} $$We can write $I$ as:
$$ I = \int \ln(x) \frac{1}{x^2}\,dx $$Where:
Therefore:
$$ I = \int u(x)v'(x)\, dx = uv - \int u'(x) u(x)\, dx $$