In [1]:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from evaluation import *
from filters import *
from utility import *
from features import *
In [ ]:
# TODO hdf =
In [ ]:
# generate datasets
tst = ['1','2','3']
tst_ds = []
for t in tst:
df_tst = hdf.get('/x1/t'+t+'/trx_1_4')
lst = df_tst.columns[df_tst.columns.str.contains('_ifft_')]
#df_tst_cl,_ = distortion_filter(df_tst_cl)
groups = get_trx_groups(df_tst)
df_std = rf_grouped(df_tst, groups=groups, fn=rf_std_single, label='target')
df_mean = rf_grouped(df_tst, groups=groups, fn=rf_mean_single)
df_all = pd.concat( [df_std, df_mean], axis=1 )
df_all = cf_std_window(df_all, window=4, label='target')
df_tst_sum = generate_class_label_presence(df_all, state_variable='target')
# remove index column
df_tst_sum = df_tst_sum[df_tst_sum.columns.values[~df_tst_sum.columns.str.contains('index')].tolist()]
print('Columns in Dataset:',t)
print(df_tst_sum.columns)
tst_ds.append(df_tst_sum.copy())
In [ ]:
# holdout validation
print(hold_out_val(tst_ds, target='target', include_self=False, cl='rf', verbose=False, random_state=1))
In [ ]:
# TODO