In [3]:
from atmPy.instruments.LAS import LAS
In [9]:
%matplotlib inline
In [5]:
import numpy as np
In [6]:
binEdgensLAS_d = np.array([ 82.85757174, 88.56265495, 94.38044132, 100.3247543 ,
106.40941737, 112.64825399, 119.05508762, 125.64374174,
132.4280398 , 139.42180528, 146.63886164, 154.09303234,
161.79902022, 169.77878706, 178.0578713 , 186.66183646,
195.61624605, 204.94679331, 214.68871354, 224.89314277,
235.61272338, 246.90009778, 258.80790836, 271.39047425,
284.71672515, 298.86312077, 313.90618324, 329.92243471,
346.98775606, 365.11337934, 384.19140117, 404.10598273,
424.80500429, 446.28096407, 468.5571783 , 491.74135582,
515.9559877 , 541.32356496, 567.96657866, 596.01593627,
625.67839101, 657.20087512, 690.8639945 , 727.08552919,
766.3273538 , 809.2344852 , 856.62532989, 909.66269765,
970.55087535, 1042.66218797, 1135.63348712, 1288.86592892,
1582.68155159, 1656.22999857, 1709.10281914, 1754.11582331,
1795.34168669, 1834.15380292, 1871.48536772, 1908.21885142,
1945.03087973, 1982.54587078, 2021.38281002, 2062.04265871,
2104.91207901, 2150.39422931, 2199.18856637, 2252.21250724,
2310.52503726, 2376.62147735, 2454.98197053, 2557.23027576,
2719.18333072, 3005.97366938, 3232.45308447, 3413.04265632,
3579.66233357, 3745.22980141, 3921.72945511, 4132.42993379,
4412.08515802, 4790.08126876, 5192.8597703 , 5503.31814005,
5732.73947002, 5912.44370856, 6062.8700658 , 6203.70876595,
6354.6500332 , 6535.38409174, 6765.60116577, 7064.99147949,
7453.24525708, 7950.05272275, 8575.10410069, 9348.08961509,
10288.69949015, 11416.62395006, 12751.55321902, 14313.17752122])
In [4]:
fname = './data/LAS_data.xls'
fr = LAS.readFromFakeXLS(fname)
fr_d = LAS.removeHousekeeping(fr)
fr_d[:] *= 60./50. #normalize to flow
In [8]:
reload(LAS)
Out[8]:
In [11]:
LAS.plot_distMap_LAS(fr_d,binEdgensLAS_d)