H2O Tutorial

Author: Spencer Aiello

Contact: spencer@h2oai.com

This tutorial steps through a quick introduction to H2O's Python API. The goal of this tutorial is to introduce through a complete example H2O's capabilities from Python. Also, to help those that are accustomed to Scikit Learn and Pandas, the demo will be specific call outs for differences between H2O and those packages; this is intended to help anyone that needs to do machine learning on really Big Data make the transition. It is not meant to be a tutorial on machine learning or algorithms.

Detailed documentation about H2O's and the Python API is available at http://docs.h2o.ai.

Setting up your system for this demo

The following code creates two csv files using data from the Boston Housing dataset which is built into scikit-learn and adds them to the local directory


In [1]:
import pandas as pd
import numpy
from numpy.random import choice
from sklearn.datasets import load_boston
from h2o.estimators.random_forest import H2ORandomForestEstimator


import h2o
h2o.init()



No instance found at ip and port: localhost:54321. Trying to start local jar...


JVM stdout: /var/folders/2j/jg4sl53d5q53tc2_nzm9fz5h0000gn/T/tmpGp_6cd/h2o_me_started_from_python.out
JVM stderr: /var/folders/2j/jg4sl53d5q53tc2_nzm9fz5h0000gn/T/tmpCRsAhn/h2o_me_started_from_python.err
Using ice_root: /var/folders/2j/jg4sl53d5q53tc2_nzm9fz5h0000gn/T/tmpnsOsd7


Java Version: java version "1.8.0_45"
Java(TM) SE Runtime Environment (build 1.8.0_45-b14)
Java HotSpot(TM) 64-Bit Server VM (build 25.45-b02, mixed mode)


Starting H2O JVM and connecting: .......... Connection successful!
H2O cluster uptime: 958 milliseconds
H2O cluster version: 3.7.0.99999
H2O cluster name: H2O_started_from_python
H2O cluster total nodes: 1
H2O cluster total memory: 3.56 GB
H2O cluster total cores: 8
H2O cluster allowed cores: 8
H2O cluster healthy: True
H2O Connection ip: 127.0.0.1
H2O Connection port: 54321

In [2]:
# transfer the boston data from pandas to H2O
boston_data = load_boston()
X = pd.DataFrame(data=boston_data.data, columns=boston_data.feature_names)
X["Median_value"] = boston_data.target
X = h2o.H2OFrame.from_python(X.to_dict("list"))


Parse Progress: [##################################################] 100%

In [3]:
# select 10% for valdation
r = X.runif(seed=123456789)
train = X[r < 0.9,:]
valid = X[r >= 0.9,:]

h2o.export_file(train, "Boston_housing_train.csv", force=True)
h2o.export_file(valid, "Boston_housing_test.csv", force=True)


Export File Progress: [##################################################] 100%

Export File Progress: [##################################################] 100%

Enable inline plotting in the Jupyter Notebook


In [4]:
%matplotlib inline
import matplotlib.pyplot as plt

Intro to H2O Data Munging

Read csv data into H2O. This loads the data into the H2O column compressed, in-memory, key-value store.


In [5]:
fr = h2o.import_file("Boston_housing_train.csv")


Parse Progress: [##################################################] 100%

View the top of the H2O frame.


In [6]:
fr.head()


CRIM ZN B LSTAT Median_value AGE TAX RAD CHAS NOX RM INDUS PTRATIO DIS
0.0063218 396.9 4.98 24 65.2 296 1 00.5386.575 2.31 15.34.09
0.02729 0 392.83 4.03 34.7 61.1 242 2 00.4697.185 7.07 17.84.9671
0.03237 0 394.63 2.94 33.4 45.8 222 3 00.4586.998 2.18 18.76.0622
0.06905 0 396.9 5.33 36.2 54.2 222 3 00.4587.147 2.18 18.76.0622
0.02985 0 394.12 5.21 28.7 58.7 222 3 00.4586.43 2.18 18.76.0622
0.0882912.5395.6 12.43 22.9 66.6 311 5 00.5246.012 7.87 15.25.5605
0.1445512.5396.9 19.15 27.1 96.1 311 5 00.5246.172 7.87 15.25.9505
0.2112412.5386.63 29.93 16.5100 311 5 00.5245.631 7.87 15.26.0821
0.1700412.5386.71 17.1 18.9 85.9 311 5 00.5246.004 7.87 15.26.5921
0.2248912.5392.52 20.45 15 94.3 311 5 00.5246.377 7.87 15.26.3467
Out[6]:

View the bottom of the H2O Frame


In [7]:
fr.tail()


CRIM ZN B LSTAT Median_value AGE TAX RAD CHAS NOX RM INDUS PTRATIO DIS
0.2896 0396.9 21.14 19.7 72.9 391 6 00.5855.39 9.69 19.22.7986
0.26838 0396.9 14.1 18.3 70.6 391 6 00.5855.794 9.69 19.22.8927
0.23912 0396.9 12.92 21.2 65.3 391 6 00.5856.019 9.69 19.22.4091
0.17783 0395.77 15.1 17.5 73.5 391 6 00.5855.569 9.69 19.22.3999
0.22438 0396.9 14.33 16.8 79.7 391 6 00.5856.027 9.69 19.22.4982
0.06263 0391.99 9.67 22.4 69.1 273 1 00.5736.593 11.93 21 2.4786
0.04527 0396.9 9.08 20.6 76.7 273 1 00.5736.12 11.93 21 2.2875
0.06076 0396.9 5.64 23.9 91 273 1 00.5736.976 11.93 21 2.1675
0.10959 0393.45 6.48 22 89.3 273 1 00.5736.794 11.93 21 2.3889
0.04741 0396.9 7.88 11.9 80.8 273 1 00.5736.03 11.93 21 2.505
Out[7]:

Select a column

fr["VAR_NAME"]


In [8]:
fr["CRIM"].head() # Tab completes


CRIM
0.00632
0.02729
0.03237
0.06905
0.02985
0.08829
0.14455
0.21124
0.17004
0.22489
Out[8]:

Select a few columns


In [9]:
columns = ["CRIM", "RM", "RAD"]
fr[columns].head()


CRIM RM RAD
0.006326.575 1
0.027297.185 2
0.032376.998 3
0.069057.147 3
0.029856.43 3
0.088296.012 5
0.144556.172 5
0.211245.631 5
0.170046.004 5
0.224896.377 5
Out[9]:

Select a subset of rows

Unlike in Pandas, columns may be identified by index or column name. Therefore, when subsetting by rows, you must also pass the column selection.


In [10]:
fr[2:7,:]  # explicitly select all columns with :


CRIM ZN B LSTAT Median_value AGE TAX RAD CHAS NOX RM INDUS PTRATIO DIS
0.03237 0 394.63 2.94 33.4 45.8 222 3 00.4586.998 2.18 18.76.0622
0.06905 0 396.9 5.33 36.2 54.2 222 3 00.4587.147 2.18 18.76.0622
0.02985 0 394.12 5.21 28.7 58.7 222 3 00.4586.43 2.18 18.76.0622
0.0882912.5395.6 12.43 22.9 66.6 311 5 00.5246.012 7.87 15.25.5605
0.1445512.5396.9 19.15 27.1 96.1 311 5 00.5246.172 7.87 15.25.9505
Out[10]:

Key attributes:

  * columns, names, col_names
  * len, shape, dim, nrow, ncol
  * types

Note:

Since the data is not in local python memory there is no "values" attribute. If you want to pull all of the data into the local python memory then do so explicitly with h2o.export_file and reading the data into python memory from disk.


In [11]:
# The columns attribute is exactly like Pandas
print("Columns:", fr.columns, "\n")
print("Columns:", fr.names, "\n")
print("Columns:", fr.col_names, "\n")

# There are a number of attributes to get at the shape
print("length:", str( len(fr) ), "\n")
print("shape:", fr.shape, "\n")
print("dim:", fr.dim, "\n")
print("nrow:", fr.nrow, "\n")
print("ncol:", fr.ncol, "\n")

# Use the "types" attribute to list the column types
print("types:", fr.types, "\n")


Columns: [u'CRIM', u'ZN', u'B', u'LSTAT', u'Median_value', u'AGE', u'TAX', u'RAD', u'CHAS', u'NOX', u'RM', u'INDUS', u'PTRATIO', u'DIS'] 

Columns: [u'CRIM', u'ZN', u'B', u'LSTAT', u'Median_value', u'AGE', u'TAX', u'RAD', u'CHAS', u'NOX', u'RM', u'INDUS', u'PTRATIO', u'DIS'] 

Columns: [u'CRIM', u'ZN', u'B', u'LSTAT', u'Median_value', u'AGE', u'TAX', u'RAD', u'CHAS', u'NOX', u'RM', u'INDUS', u'PTRATIO', u'DIS'] 

length: 462 

shape: (462, 14) 

dim: [462, 14] 

nrow: 462 

ncol: 14 

types: {u'CRIM': u'real', u'ZN': u'real', u'B': u'real', u'LSTAT': u'real', u'TAX': u'int', u'AGE': u'real', u'Median_value': u'real', u'RAD': u'int', u'CHAS': u'int', u'NOX': u'real', u'RM': u'real', u'INDUS': u'real', u'PTRATIO': u'real', u'DIS': u'real'} 

Select rows based on value


In [12]:
fr.shape


Out[12]:
(462, 14)

Boolean masks can be used to subselect rows based on a criteria.


In [13]:
mask = fr["CRIM"]>1
fr[mask,:].shape


Out[13]:
(155, 14)

Get summary statistics of the data and additional data distribution information.


In [14]:
fr.describe()


Rows:462 Cols:14

Chunk compression summary:
chunk_type chunk_name count count_percentage size size_percentage
CBS Bits 1 7.1428576 128 B 0.4
C1N 1-Byte Integers (w/o NAs) 1 7.1428576 530 B 1.6260661
C2 2-Byte Integers 1 7.1428576 992 B 3.043505
C2S 2-Byte Fractions 1 7.1428576 1008 B 3.0925937
CUD Unique Reals 4 28.57143 7.2 KB 22.5563
C8D 64-bit Reals 6 42.857143 22.1 KB 69.288826
Frame distribution summary:
size number_of_rows number_of_chunks_per_column number_of_chunks
172.16.2.40:54321 31.8 KB 462.0 1.0 14.0
mean 31.8 KB 462.0 1.0 14.0
min 31.8 KB 462.0 1.0 14.0
max 31.8 KB 462.0 1.0 14.0
stddev 0 B 0.0 0.0 0.0
total 31.8 KB 462.0 1.0 14.0

CRIM ZN B LSTAT Median_value AGE TAX RAD CHAS NOX RM INDUS PTRATIO DIS
type real real real real real real int int int real real real real real
mins 0.00632 0.0 0.32 1.73 5.0 6.0 187.0 1.0 0.0 0.385 3.561 0.46 12.6 1.1296
mean 3.5681033333311.0865800866357.20519480512.667878787922.6028138528 68.911038961 407.5541125549.441558441560.06277056277060.5550688311696.28235930736 11.138051948118.45995671 3.79056731602
maxs 88.9762 100.0 396.9 37.97 50.0 100.0 711.0 24.0 1.0 0.871 8.78 27.74 22.0 12.1265
sigma 8.6826801454323.208642305290.75007790027.1419482934 9.21258527358 27.9631409743167.4602950788.643571467730.242812755044 0.1153494407150.7071391729226.859820587762.165229669322.11032018051
zeros 0 343 0 0 0 0 0 0 433 0 0 0 0 0
missing0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0.00632 18.0 396.9 4.98 24.0 65.2 296.0 1.0 0.0 0.538 6.575 2.31 15.3 4.09
1 0.02729 0.0 392.83 4.03 34.7 61.1 242.0 2.0 0.0 0.469 7.185 7.07 17.8 4.9671
2 0.03237 0.0 394.63 2.94 33.4 45.8 222.0 3.0 0.0 0.458 6.998 2.18 18.7 6.0622
3 0.06905 0.0 396.9 5.33 36.2 54.2 222.0 3.0 0.0 0.458 7.147 2.18 18.7 6.0622
4 0.02985 0.0 394.12 5.21 28.7 58.7 222.0 3.0 0.0 0.458 6.43 2.18 18.7 6.0622
5 0.08829 12.5 395.6 12.43 22.9 66.6 311.0 5.0 0.0 0.524 6.012 7.87 15.2 5.5605
6 0.14455 12.5 396.9 19.15 27.1 96.1 311.0 5.0 0.0 0.524 6.172 7.87 15.2 5.9505
7 0.21124 12.5 386.63 29.93 16.5 100.0 311.0 5.0 0.0 0.524 5.631 7.87 15.2 6.0821
8 0.17004 12.5 386.71 17.1 18.9 85.9 311.0 5.0 0.0 0.524 6.004 7.87 15.2 6.5921
9 0.22489 12.5 392.52 20.45 15.0 94.3 311.0 5.0 0.0 0.524 6.377 7.87 15.2 6.3467

Set up the predictor and response column names

Using H2O algorithms, it's easier to reference predictor and response columns by name in a single frame (i.e., don't split up X and y)


In [15]:
x = fr.names[:]
y="Median_value"
x.remove(y)

Machine Learning With H2O

H2O is a machine learning library built in Java with interfaces in Python, R, Scala, and Javascript. It is open source and well-documented.

Unlike Scikit-learn, H2O allows for categorical and missing data.

The basic work flow is as follows:

  • Fit the training data with a machine learning algorithm
  • Predict on the testing data

Simple model


In [16]:
# Define and fit first 400 points
model = H2ORandomForestEstimator(seed=42)
model.train(x=x, y=y, training_frame=fr[:400,:])


drf Model Build Progress: [##################################################] 100%

In [17]:
model.predict(fr[400:fr.nrow,:])        # Predict the rest


predict
12.736
10.1
10.048
12.742
10.498
14.902
17.218
15.148
14.738
16.491
Out[17]:

The performance of the model can be checked using the holdout dataset


In [18]:
perf = model.model_performance(fr[400:fr.nrow,:])
perf.r2()      # get the r2 on the holdout data
perf.mse()     # get the mse on the holdout data
perf           # display the performance object


ModelMetricsRegression: drf
** Reported on test data. **

MSE: 13.4756382476
R^2: 0.405996106866
Mean Residual Deviance: 13.4756382476
Out[18]:

Train-Test Split

Instead of taking the first 400 observations for training, we can use H2O to create a random test train split of the data.


In [19]:
r = fr.runif(seed=12345)   # build random uniform column over [0,1]
train= fr[r<0.75,:]     # perform a 75-25 split
test = fr[r>=0.75,:]

model = H2ORandomForestEstimator(seed=42)
model.train(x=x, y=y, training_frame=train, validation_frame=test)

perf = model.model_performance(test)
perf.r2()


drf Model Build Progress: [##################################################] 100%
Out[19]:
0.8530416308371256

There was a massive jump in the R^2 value. This is because the original data is not shuffled.

Cross validation

H2O's machine learning algorithms take an optional parameter nfolds to specify the number of cross-validation folds to build. H2O's cross-validation uses an internal weight vector to build the folds in an efficient manner (instead of physically building the splits).

In conjunction with the nfolds parameter, a user may specify the way in which observations are assigned to each fold with the fold_assignment parameter, which can be set to either:

    * AUTO:  Perform random assignment
    * Random: Each row has a equal (1/nfolds) chance of being in any fold.
    * Modulo: Observations are in/out of the fold based by modding on nfolds

In [20]:
model = H2ORandomForestEstimator(nfolds=10) # build a 10-fold cross-validated model
model.train(x=x, y=y, training_frame=fr)


drf Model Build Progress: [##################################################] 100%

In [21]:
scores = numpy.array([m.r2() for m in model.xvals]) # iterate over the xval models using the xvals attribute
print("Expected R^2: %.2f +/- %.2f \n" % (scores.mean(), scores.std()*1.96))
print("Scores:", scores.round(2))


Expected R^2: 0.86 +/- 0.03 

Scores: [ 0.83  0.87  0.84  0.87  0.86  0.88  0.86  0.85  0.87  0.87]

However, you can still make use of the cross_val_score from Scikit-Learn

Cross validation: H2O and Scikit-Learn


In [22]:
from sklearn.model_selection import cross_val_score
from h2o.cross_validation import H2OKFold
from h2o.model.regression import h2o_r2_score
from sklearn.metrics.scorer import make_scorer

You still must use H2O to make the folds. Currently, there is no H2OStratifiedKFold. Additionally, the H2ORandomForestEstimator is similar to the scikit-learn RandomForestRegressor object with its own train method.


In [23]:
model = H2ORandomForestEstimator(seed=42)

In [24]:
scorer = make_scorer(h2o_r2_score)   # make h2o_r2_score into a scikit_learn scorer
custom_cv = H2OKFold(fr, n_folds=10, seed=42) # make a cv 
scores = cross_val_score(model, fr[x], fr[y], scoring=scorer, cv=custom_cv)

print("Expected R^2: %.2f +/- %.2f \n" % (scores.mean(), scores.std()*1.96))
print("Scores:", scores.round(2))


drf Model Build Progress: [##################################################] 100%

drf Model Build Progress: [##################################################] 100%

drf Model Build Progress: [##################################################] 100%

drf Model Build Progress: [##################################################] 100%

drf Model Build Progress: [##################################################] 100%

drf Model Build Progress: [##################################################] 100%

drf Model Build Progress: [##################################################] 100%

drf Model Build Progress: [##################################################] 100%

drf Model Build Progress: [##################################################] 100%

drf Model Build Progress: [##################################################] 100%
Expected R^2: 0.87 +/- 0.10 

Scores: [ 0.84  0.88  0.87  0.93  0.82  0.76  0.85  0.92  0.91  0.89]

There isn't much difference in the R^2 value since the fold strategy is exactly the same. However, there was a major difference in terms of computation time and memory usage.

Since the progress bar print out gets annoying let's disable that


In [25]:
h2o.__PROGRESS_BAR__=False
h2o.no_progress()

Grid search in H2O is still under active development and it will be available very soon. However, it is possible to make use of Scikit's grid search infrastructure (with some performance penalties)

Randomized grid search: H2O and Scikit-Learn


In [26]:
from sklearn import __version__
sklearn_version = __version__
print(sklearn_version)


0.16.1

If you have 0.16.1, then your system can't handle complex randomized grid searches (it works in every other version of sklearn, including the soon to be released 0.16.2 and the older versions).

The steps to perform a randomized grid search:

  1. Import model and RandomizedSearchCV
  2. Define model
  3. Specify parameters to test
  4. Define grid search object
  5. Fit data to grid search object
  6. Collect scores

All the steps will be repeated from above.

Because 0.16.1 is installed, we use scipy to define specific distributions

ADVANCED TIP:

Turn off reference counting for spawning jobs in parallel (n_jobs=-1, or n_jobs > 1). We'll turn it back on again in the aftermath of a Parallel job.

If you don't want to run jobs in parallel, don't turn off the reference counting.

Pattern is:

     >>> h2o.turn_off_ref_cnts()
     >>> .... parallel job ....
     >>> h2o.turn_on_ref_cnts()

In [27]:
%%time
from sklearn.model_selection import RandomizedSearchCV  # Import grid search
from scipy.stats import randint, uniform

model = H2ORandomForestEstimator(seed=42)        # Define model

params = {"ntrees": randint(20,30),
          "max_depth": randint(1,10),
          "min_rows": randint(1,10),    # scikit's  min_samples_leaf
          "mtries": randint(2,fr[x].shape[1]),} # Specify parameters to test

scorer = make_scorer(h2o_r2_score)   # make h2o_r2_score into a scikit_learn scorer
custom_cv = H2OKFold(fr, n_folds=5, seed=42) # make a cv 
random_search = RandomizedSearchCV(model, params, 
                                   n_iter=10, 
                                   scoring=scorer, 
                                   cv=custom_cv, 
                                   random_state=42,
                                   n_jobs=1)       # Define grid search object

random_search.fit(fr[x], fr[y])

print("Best R^2:", random_search.best_score_, "\n")
print("Best params:", random_search.best_params_)


Best R^2: 0.834051920102 

Best params: {'mtries': 3, 'ntrees': 36, 'min_rows': 1, 'max_depth': 6}
CPU times: user 1min 11s, sys: 2.6 s, total: 1min 13s
Wall time: 5min 48s

We might be tempted to think that we just had a large improvement; however we must be cautious. The function below creates a more detailed report.


In [28]:
def report_grid_score_detail(random_search, charts=True):
    """Input fit grid search estimator. Returns df of scores with details"""
    df_list = []

    for line in random_search.grid_scores_:
        results_dict = dict(line.parameters)
        results_dict["score"] = line.mean_validation_score
        results_dict["std"] = line.cv_validation_scores.std()*1.96
        df_list.append(results_dict)

    result_df = pd.DataFrame(df_list)
    result_df = result_df.sort("score", ascending=False)
    
    if charts:
        for col in get_numeric(result_df):
            if col not in ["score", "std"]:
                plt.scatter(result_df[col], result_df.score)
                plt.title(col)
                plt.show()

        for col in list(result_df.columns[result_df.dtypes == "object"]):
            cat_plot = result_df.score.groupby(result_df[col]).mean()[0]
            cat_plot.sort()
            cat_plot.plot(kind="barh", xlim=(.5, None), figsize=(7, cat_plot.shape[0]/2))
            plt.show()
    return result_df

def get_numeric(X):
    """Return list of numeric dtypes variables"""
    return X.dtypes[X.dtypes.apply(lambda x: str(x).startswith(("float", "int", "bool")))].index.tolist()

In [29]:
report_grid_score_detail(random_search).head()


Out[29]:
max_depth min_rows mtries ntrees score std
24 6 1 3 36 0.834052 0.140556
27 9 5 5 47 0.823304 0.163869
17 7 3 7 25 0.822285 0.162661
22 6 3 3 40 0.821114 0.134162
1 6 3 3 45 0.820230 0.160923

Based on the grid search report, we can narrow the parameters to search and rerun the analysis. The parameters below were chosen after a few runs:


In [30]:
%%time

params = {"ntrees": randint(30,35),
          "max_depth": randint(5,8),
          "mtries": randint(4,6),}

custom_cv = H2OKFold(fr, n_folds=5, seed=42)           # In small datasets, the fold size can have a big
                                                       # impact on the std of the resulting scores. More
random_search = RandomizedSearchCV(model, params,      # folds --> Less examples per fold --> higher 
                                   n_iter=5,           # variation per sample
                                   scoring=scorer, 
                                   cv=custom_cv, 
                                   random_state=43, 
                                   n_jobs=1)       

random_search.fit(fr[x], fr[y])

print("Best R^2:", random_search.best_score_, "\n")
print("Best params:", random_search.best_params_)

report_grid_score_detail(random_search)


Best R^2: 0.847411248634 

Best params: {'mtries': 9, 'ntrees': 34, 'max_depth': 6}
CPU times: user 12.1 s, sys: 419 ms, total: 12.5 s
Wall time: 24.5 s

Transformations

Rule of machine learning: Don't use your testing data to inform your training data. Unfortunately, this happens all the time when preparing a dataset for the final model. But on smaller datasets, you must be especially careful.

At the moment, there are no classes for managing data transformations. On the one hand, this requires the user to tote around some extra state, but on the other, it allows the user to be more explicit about transforming H2OFrames.

Basic steps:

  1. Remove the response variable from transformations.
  2. Import transformer
  3. Define transformer
  4. Fit train data to transformer
  5. Transform test and train data
  6. Re-attach the response variable.

First let's normalize the data using the means and standard deviations of the training data. Then let's perform a principal component analysis on the training data and select the top 5 components. Using these components, let's use them to reduce the train and test design matrices.


In [31]:
from h2o.transforms.preprocessing import H2OScaler
from h2o.estimators.pca import H2OPrincipalComponentAnalysisEstimator as H2OPCA

Normalize Data: Use the means and standard deviations from the training data.


In [32]:
y_train = train.pop("Median_value")
y_test  = test.pop("Median_value")

In [33]:
norm = H2OScaler()
norm.fit(train)
X_train_norm = norm.transform(train)
X_test_norm  = norm.transform(test)

In [34]:
print(X_test_norm.shape)
X_test_norm


(122, 13)
CRIM ZN B LSTAT AGE TAX RAD CHAS NOX RM INDUS PTRATIO DIS
-24.7362-246.063 3478.06-52.4412 -413.735-30080.2-51.9628-0.0148904-0.011189 0.630504-63.7738 0.684709 4.8237
-23.6596 36.577 2566.04126.336 883.755-15288.4-34.9094-0.0148904-0.00359264-0.476113-23.6871-7.11246 4.86543
-24.3696 36.577 3478.06 5.2618 399.321-15288.4-34.9094-0.0148904-0.00359264-0.200189-23.6871-7.11246 5.16867
-24.549 36.577 2909.71 22.9942 -844.343-15288.4-34.9094-0.0148904-0.00359264-0.287784-23.6871-7.11246 3.54176
-20.4906-246.063 3478.06-31.1478 -198.431-15953.2-43.4361-0.0148904-0.0019813 -0.243987-21.7849 5.80856 1.98279
-15.927 -246.063 3478.06 44.869 648.62 -15953.2-43.4361-0.0148904-0.0019813 -0.103105-21.7849 5.80856 0.450669
-19.5782-246.063 3249.84 27.282 716.611-15953.2-43.4361-0.0148904-0.0019813 -0.262235-21.7849 5.80856 1.3371
-19.4061-246.063 2682.37 1.84613 725.11 -15953.2-43.4361-0.0148904-0.0019813 0.154571-21.7849 5.80856 1.45265
-13.047 -246.063-9717.44 56.6422 795.933-15953.2-43.4361-0.0148904-0.0019813 -0.136683-21.7849 5.80856 -0.00460617
-23.9336-246.063 3169.91-17.5578 -1093.64 -20606.8-34.9094-0.0148904-0.00647003-0.231577-37.1433 1.79859 0.178888
Out[34]:

Then, we can apply PCA and keep the top 5 components. A user warning is expected here.


In [35]:
pca = H2OPCA(k=5)
pca.fit(X_train_norm)
X_train_norm_pca = pca.transform(X_train_norm)
X_test_norm_pca  = pca.transform(X_test_norm)


/Library/Python/2.7/site-packages/h2o/transforms/decomposition.py:61: UserWarning: 

	`fit` is not recommended outside of the sklearn framework. Use `train` instead.
  return super(H2OPCA, self).fit(X)

In [36]:
# prop of variance explained by top 5 components?

In [37]:
print(X_test_norm_pca.shape)
X_test_norm_pca[:5]


(122, 5)
PC1 PC2 PC3 PC4 PC5
-30275.3 -625.604 190.44 369.211 12.3892
-15481 465.9461014.83 -446.059 38.3513
-15611.4 1372.84 586.132-231.06 -0.387572
-15551.9 817.878-530.932 323.576 21.2814
-16276.8 1286.24 185.615 287.705 -4.8135
-16264.8 1280.6 945.465 -89.920817.0235
-16233 1054.06 1003.81 -119.775 5.92804
-16156.1 491.8061005.79 -122.634 -4.7376
-14477.2-11794 962.697-136.698 -1.80573
-20857.9 356.531-552.38 682.064 21.0776
Out[37]:


In [38]:
model = H2ORandomForestEstimator(seed=42)
model.train(x=X_train_norm_pca.names, y=y_train.names, training_frame=X_train_norm_pca.cbind(y_train))
y_hat  = model.predict(X_test_norm_pca)

In [39]:
h2o_r2_score(y_test,y_hat)


Out[39]:
0.5344823408872756

Although this is MUCH simpler than keeping track of all of these transformations manually, it gets to be somewhat of a burden when you want to chain together multiple transformers.

Pipelines

"Tranformers unite!"

If your raw data is a mess and you have to perform several transformations before using it, use a pipeline to keep things simple.

Steps:

  1. Import Pipeline, transformers, and model
  2. Define pipeline. The first and only argument is a list of tuples where the first element of each tuple is a name you give the step and the second element is a defined transformer. The last step is optionally an estimator class (like a RandomForest).
  3. Fit the training data to pipeline
  4. Either transform or predict the testing data

In [40]:
from h2o.transforms.preprocessing import H2OScaler
from h2o.estimators.pca import H2OPrincipalComponentAnalysisEstimator as H2OPCA

In [41]:
from sklearn.pipeline import Pipeline                # Import Pipeline <other imports not shown>
model = H2ORandomForestEstimator(seed=42)
pipe = Pipeline([("standardize", H2OScaler()),       # Define pipeline as a series of steps
                 ("pca", H2OPCA(k=5)),
                 ("rf", model)])                     # Notice the last step is an estimator

pipe.fit(train, y_train)                             # Fit training data
y_hat = pipe.predict(test)                           # Predict testing data (due to last step being an estimator)
h2o_r2_score(y_test, y_hat)                          # Notice the final score is identical to before


Out[41]:
0.4977863701713895

This is so much easier!!!

But, wait a second, we did worse after applying these transformations! We might wonder how different hyperparameters for the transformations impact the final score.

Combining randomized grid search and pipelines

"Yo dawg, I heard you like models, so I put models in your models to model models."

Steps:

  1. Import Pipeline, grid search, transformers, and estimators
  2. Define pipeline
  3. Define parameters to test in the form: "(Step name)__(argument name)" A double underscore separates the two words.
  4. Define grid search
  5. Fit to grid search

In [42]:
pipe = Pipeline([("standardize", H2OScaler()),
                 ("pca", H2OPCA()),
                 ("rf", H2ORandomForestEstimator(seed=42))])

params = {"standardize__center":    [True, False],           # Parameters to test
          "standardize__scale":     [True, False],
          "pca__k":                 randint(2, 6),
          "rf__ntrees":             randint(10,20),
          "rf__max_depth":          randint(4,10),
          "rf__min_rows":           randint(5,10), }
#           "rf__mtries":             randint(1,4),}           # gridding over mtries is 
                                                               # problematic with pca grid over 
                                                               # k above 

from sklearn.model_selection import RandomizedSearchCV
from h2o.cross_validation import H2OKFold
from h2o.model.regression import h2o_r2_score
from sklearn.metrics.scorer import make_scorer

custom_cv = H2OKFold(fr, n_folds=5, seed=42)
random_search = RandomizedSearchCV(pipe, params,
                                   n_iter=5,
                                   scoring=make_scorer(h2o_r2_score),
                                   cv=custom_cv,
                                   random_state=42,
                                   n_jobs=1)


random_search.fit(fr[x],fr[y])
results = report_grid_score_detail(random_search)
results.head()


Out[42]:
pca__k rf__max_depth rf__min_rows rf__ntrees score standardize__center standardize__scale std
18 5 8 5 69 0.376312 False True 0.087629
10 5 8 6 51 0.370140 False True 0.095910
8 5 9 8 69 0.363435 False False 0.103074
17 5 6 5 71 0.360376 False True 0.109905
9 3 9 6 52 0.358997 False True 0.118261

Currently Under Development (drop-in scikit-learn pieces):

* Richer set of transforms (only PCA and Scale are implemented)
* Richer set of estimators (only RandomForest is available)
* Full H2O Grid Search

Other Tips: Model Save/Load

It is useful to save constructed models to disk and reload them between H2O sessions. Here's how:


In [43]:
best_estimator = random_search.best_estimator_                        # fetch the pipeline from the grid search
h2o_model      = h2o.get_model(best_estimator._final_estimator._id)    # fetch the model from the pipeline

In [44]:
save_path = h2o.save_model(h2o_model, path=".", force=True)
print(save_path)


/Users/ludirehak/h2o-3/DRF_model_python_1446227466951_6362

In [45]:
# assumes new session
my_model = h2o.load_model(path=save_path)

In [46]:
my_model.predict(X_test_norm_pca)


predict
21.1277
17.681
21.0579
22.335
22.0658
21.6363
22.0799
21.4214
21.6735
22.1625
Out[46]:


In [ ]: