In [1]:
from __future__ import print_function
from collections import OrderedDict
import matplotlib.pyplot as plt
import numpy as np
from nn_transfer import transfer, util
%matplotlib inline
In [2]:
import torch
from torch.autograd import Variable
import torch.nn as nn
import torch.nn.functional as F
class LeNet(nn.Module):
def __init__(self):
super(LeNet, self).__init__()
self.conv1 = nn.Conv2d(1, 6, 5)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16*5*5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
out = F.relu(self.conv1(x))
out = F.max_pool2d(out, 2)
out = F.relu(self.conv2(out))
out = F.max_pool2d(out, 2)
out = out.view(out.size(0), -1)
out = F.relu(self.fc1(out))
out = F.relu(self.fc2(out))
out = self.fc3(out)
return out
pytorch_network = LeNet()
In [3]:
# The most useful, just print the network
print(pytorch_network)
# Also useful: will only print those layers with params
state_dict = pytorch_network.state_dict()
print(util.state_dict_layer_names(state_dict))
In [4]:
import keras
from keras import backend as K
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D
K.set_image_data_format('channels_first')
def lenet_keras():
model = Sequential()
model.add(Conv2D(6, kernel_size=(5, 5),
activation='relu',
input_shape=(1,32,32),
name='conv1'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(16, (5, 5), activation='relu', name='conv2'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dense(120, activation='relu', name='fc1'))
model.add(Dense(84, activation='relu', name='fc2'))
model.add(Dense(10, activation=None, name='fc3'))
model.compile(loss=keras.losses.categorical_crossentropy,
optimizer=keras.optimizers.Adadelta())
return model
keras_network = lenet_keras()
In [5]:
transfer.keras_to_pytorch(keras_network, pytorch_network)
In [6]:
# Create dummy data
data = torch.rand(6,1,32,32)
data_keras = data.numpy()
data_pytorch = Variable(data, requires_grad=False)
# Do a forward pass in both frameworks
keras_pred = keras_network.predict(data_keras)
pytorch_pred = pytorch_network(data_pytorch).data.numpy()
In [7]:
assert keras_pred.shape == pytorch_pred.shape
plt.axis('Off')
plt.imshow(keras_pred)
plt.show()
plt.axis('Off')
plt.imshow(pytorch_pred)
plt.show()
They are the same, it works :)