In [1]:
%%html
<script type="text/javascript">
     show=true;
     function toggle(){
         if (show){$('div.input').hide();}else{$('div.input').show();}
            show = !show}
 </script>
 <h2><a href="javascript:toggle()" target="_self">Click to toggle code input</a></h2>


Click to toggle code input

Mario Juric at SETI Institute January 14, 2014

LSST, Entering the Era of Petascale Optical Astronomy

Link to the full YouTube video

TL;DW:

What is LSST going to do and what are some of its challenges.


In [2]:
from IPython.display import YouTubeVideo
from datetime import timedelta

Overview of LSST-

  • The ultimate deliverable of LSST is the fully reduced data.
  • Robotic telescope
  • Publicly funded project with early contributions from private donors
  • NSF and DOE mostly-- so totally public, no proprietary period

"[LSST] is practically a robot that sits on a mountain and does its thing."


In [3]:
YouTubeVideo('n4OysNeyXpc', start=225, end=243)


Out[3]:

LSST science goals

  1. Time domain science- repeated observations of the sky (~800 repeated visits)
    • Supernovae
    • Compact object mergers
  2. Solar system science
    • Census of near earth asteroids
    • Potentially hazardous
  3. Mapping the Milky Way
    • Galactic structure
    • Tidal streams
  4. Dark Energy and Dark Matter (10:18)
    • Major driver of LSST
    • Dark matter is cosmological constant or something else?

In [4]:
start = int(timedelta(hours=0, minutes=7, seconds=18).total_seconds())
end = int(timedelta(hours=0, minutes=12, seconds=2).total_seconds())
YouTubeVideo('n4OysNeyXpc', start=438, end=722)


Out[4]:

Decadal survey ranked LSST as the top ground based facility for the next decade.


In [5]:
start = int(timedelta(hours=0, minutes=12, seconds=2).total_seconds())
end = int(timedelta(hours=0, minutes=12, seconds=44).total_seconds())
YouTubeVideo('n4OysNeyXpc', start=start, end=end)


Out[5]:

Who/where is LSST?

  • Between about 50 and 100 people
  • Science case is effectively being built pro-bono by community
  • Location is Cerro Pachon in Chile, not far from La Serena

LSST by numbers

  • 10 years
  • 20,000 sq degrees
  • ~800 visits per source
  • 10 billion objects
  • Limiting magnitude of $R = 27$

LSST will not reobserve the Galactic plane.


In [6]:
start = int(timedelta(hours=0, minutes=17, seconds=5).total_seconds())
end = int(timedelta(hours=0, minutes=18, seconds=0).total_seconds())
YouTubeVideo('n4OysNeyXpc', start=start, end=end)


Out[6]:

Camera will be the largest astronomical camera in existence.

  • 3.2 Gigapixel
  • 0.2 arcseconds per pixel
  • 9.6 square degree FOV
  • 6 filters
  • 2 second readout time (!)
  • 15 second exposure time
  • 189 CCD chips
  • 4k x 4k pixels
  • 3 x 3 CCD raft (21 of these)
  • 16 individual readouts
  • 3.5 deg FOV
  • corner area wavefront sensing and guiding
  • 10 $\mu$m pixels

In [7]:
start = int(timedelta(hours=0, minutes=19, seconds=37).total_seconds())
end = int(timedelta(hours=0, minutes=23, seconds=30).total_seconds())
YouTubeVideo('n4OysNeyXpc', start=start, end=end)


Out[7]:

Data management system

  • Catalog generation
  • How do you make a petascale database to both astronomers and the public?
  • All the data processing is going on at the NCSA in Illinois
  • Data links for real-time data processing. Redundant links.
  • Supercomputers for data crunching.

In [8]:
start = int(timedelta(hours=0, minutes=23, seconds=55).total_seconds())
end = int(timedelta(hours=0, minutes=27, seconds=21).total_seconds())
YouTubeVideo('n4OysNeyXpc', start=start, end=end)


Out[8]:

Catalogs

  • Level 1: time sensitive
    • Time domain alerts within 60 seconds.
    • What to do with ~10 million time-domain events per night?
    • ~6 million bodies in the Solar System. (about 85% of asteroids bigger than 130 meters)
  • Level 2: stable catalog
    • Deep coadds of images
    • Annually released catalog
    • ~37 billion objects (20B galaxies, 17B stars)
  • Level 3: Access to the data
    • Ship users hard drives?
    • Bring the questions to the data (query the data)
    • Do the computing on the cloud

In [9]:
start = int(timedelta(hours=0, minutes=27, seconds=21).total_seconds())
end = int(timedelta(hours=0, minutes=36, seconds=54).total_seconds())
YouTubeVideo('n4OysNeyXpc', start=start, end=end)


Out[9]:

Software

  • Freely available and open source (now!)
  • Works for Mac OSX 10.7+
  • Still in development

Astronomers are not used to working with machines like this.


In [10]:
# Software
start = int(timedelta(hours=0, minutes=40, seconds=0).total_seconds())
end = int(timedelta(hours=0, minutes=41, seconds=12).total_seconds())
#YouTubeVideo('n4OysNeyXpc', start=start, end=end)

# Effectively using large survey data
start = int(timedelta(hours=0, minutes=40, seconds=0).total_seconds())
end = int(timedelta(hours=0, minutes=46, seconds=30).total_seconds())
#YouTubeVideo('n4OysNeyXpc', start=start, end=end)

# Serendipitous science
start = int(timedelta(hours=0, minutes=46, seconds=30).total_seconds())
end = int(timedelta(hours=0, minutes=47, seconds=14).total_seconds())
#YouTubeVideo('n4OysNeyXpc', start=start, end=end)

Thriving in the Era of Large Surveys

  • Data driven astronomers
  • What theories can I test with the data I have?
  • Teaching the computer to find discoveries for us
  • Code, statistics, interfacing with large databases
  • Machine learning, artificial intelligence

In [11]:
# Thriving in the Era of Large Surveys
start = int(timedelta(hours=0, minutes=47, seconds=14).total_seconds())
end = int(timedelta(hours=0, minutes=49, seconds=50).total_seconds())
YouTubeVideo('n4OysNeyXpc', start=start, end=end)


Out[11]:

Software engineering will become as essential as mathematics

  • Data driven astronomer
  • Software is not taken as seriously in astronomy
  • Software to be taught not learned through osmosis
  • SQL
  • More computer science is needed

In [12]:
start = int(timedelta(hours=0, minutes=49, seconds=48).total_seconds())
end = int(timedelta(hours=0, minutes=51, seconds=50).total_seconds())
YouTubeVideo('n4OysNeyXpc', start=start, end=end)


Out[12]:

End of talk. Question time.

Calibration

  • Self calibration
  • Reobserve the sky with different parts of the detector.
  • Calibrations of SDSS were not used at all.
  • There is more data in the survey itself

In [13]:
start = int(timedelta(hours=0, minutes=53, seconds=50).total_seconds())
end = int(timedelta(hours=0, minutes=54, seconds=50).total_seconds())
YouTubeVideo('n4OysNeyXpc', start=start, end=end)


Out[13]:

What and how to teach our students?

  • Depends on individual institutions.
  • Large surveys know this.
  • Share code
  • What is needed to make LSST a success?

In [14]:
start = int(timedelta(hours=0, minutes=59, seconds=33).total_seconds())
end = int(timedelta(hours=1, minutes=1, seconds=37).total_seconds())
YouTubeVideo('n4OysNeyXpc', start=start, end=end)


Out[14]: