OEIS.py redefines many sequences from the On-Line Encyclopedia of Integer Sequences https://oeis.org/
In [1]:
from Goulib.notebook import *
from oeis import *
for id in sorted(oeis):
seq=oeis[id]
print(seq,seq.desc)
A000004 (0,0,0,0,0,0,0,0,0,0,... ...) The zero sequence
A000005 (1,2,2,3,2,4,2,4,3,4,... ...) d(n) (also called tau(n) or sigma_0(n)), the number of divisors of n.
A000006 (1,1,2,2,3,3,4,4,4,5,... ...) Integer part of square root of n-th prime.
A000007 (1,0,0,0,0,0,0,0,0,0,... ...) The characteristic function of 0: a(n) = 0^n.
A000009 (1,1,1,2,2,3,4,5,6,8,... ...) Expansion of Product_{m >= 1} (1 + x^m); number of partitions of n into distinct parts; number of partitions of n into odd parts (if n > 0).
A000010 (1,1,2,2,4,2,6,4,6,4,... ...) Euler totient function
:see: http://stackoverflow.com/questions/1019040/how-many-numbers-below-n-are-coprimes-to-n
A000027 (1,2,3,4,5,6,7,8,9,10,... ...) The positive integers.
A000040 (2,3,5,7,11,13,17,19,23,29,... ...) The prime numbers
A000041 (1,1,2,3,5,7,11,15,22,30,... ...) number of partitions of n (the partition numbers)
A000043 (2,3,5,7,13,17,19,31,61,89,... ...) Mersenne exponents: primes p such that 2^p - 1 is prime.
A000045 (0,1,1,2,3,5,8,13,21,34,... ...) Fibonacci numbers: F(n) = F(n-1) + F(n-2) with F(0) = 0 and F(1) = 1
A000079 (1,2,4,8,16,32,64,128,256,512,... ...) Powers of 2: a(n) = 2^n.
A000108 (1,1,2,5,14,42,132,429,1430,4862,... ...) Catalan numbers: C(n) = binomial(2n,n)/(n+1) = (2n)!/(n!(n+1)!).
A000110 (1,1,2,5,15,52,203,877,4140,21147,... ...)
A000120 (0,1,1,2,1,2,2,3,1,2,... ...) None
A000129 (0,1,2,5,12,29,70,169,408,985,... ...)
A000142 (1,1,2,6,24,120,720,5040,40320,362880,... ...)
A000196 (0,1,1,1,2,2,2,2,2,3,... ...) Integer part of square root of n. Or, number of positive squares <= n. Or, n appears 2n+1 times
A000203 (1,3,4,7,6,12,8,15,13,18,... ...) sigma(n), the sum of the divisors of n. Also called sigma_1(n).
A000215 (3,5,17,257,65537,4294967297,18446744073709551617,340282366920938463463374607431768211457,115792089237316195423570985008687907853269984665640564039457584007913129639937,13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084097,... ...) Fermat numbers
A000216 (2,4,16,37,58,89,145,42,20,4,... ...) Take sum of squares of digits of previous term, starting with 2
A000217 (0,1,3,6,10,15,21,28,36,45,... ...) triangle numbers
A000218 (3,9,81,65,61,37,58,89,145,42,... ...) Take sum of squares of digits of previous term, starting with 3
A000221 (5,25,29,85,89,145,42,20,4,16,... ...) Take sum of squares of digits of previous term, starting with 5
A000244 (1,3,9,27,81,243,729,2187,6561,19683,... ...) Powers of 3: a(n) = 3^n.
A000290 (0,1,4,9,16,25,36,49,64,81,... ...) squares
A000292 (0,1,4,10,20,35,56,84,120,165,... ...) Tetrahedral (or triangular pyramidal) numbers
A000326 (0,1,5,12,22,35,51,70,92,117,... ...) pentagonal numbers
A000330 (0,1,5,14,30,55,91,140,204,285,... ...) Square pyramidal numbers
A000332 (0,0,0,0,1,5,15,35,70,126,... ...) Binomial coefficient binomial(n,4) = n*(n-1)*(n-2)*(n-3)/24.
A000384 (0,1,6,15,28,45,66,91,120,153,... ...)
:return: nth hexagonal number
:see: https://en.wikipedia.org/wiki/Hexagonal_number
A000396 (6,28,496,8128,33550336,8589869056,137438691328,2305843008139952128,2658455991569831744654692615953842176,191561942608236107294793378084303638130997321548169216,... ...) Perfect numbers n: n is equal to the sum of the proper divisors of n.
A000537 (0,1,9,36,100,225,441,784,1296,2025,... ...) Sum of first n cubes; or n-th triangular number squared
A000566 (0,1,7,18,34,55,81,112,148,189,... ...) None
A000567 (0,1,8,21,40,65,96,133,176,225,... ...) None
A000668 (3,7,31,127,8191,131071,524287,2147483647,2305843009213693951,618970019642690137449562111,... ...) Mersenne primes (of form 2^p - 1 where p is a prime).
A000720 (0,1,2,2,3,3,4,4,4,4,... ...) pi(n), the number of primes <= n. Sometimes called PrimePi(n)
A000796 (3,1,4,1,5,9,2,6,5,3,... ...) Decimal expansion of Pi (or, digits of Pi).0
A000931 (1,0,0,1,0,1,1,1,2,2,... ...) Padovan sequence: a(n) = a(n-2) + a(n-3) with a(0)=1, a(1)=a(2)=0.
A000961 (1,2,3,4,5,7,8,9,11,13,... ...) Powers of primes. Alternatively, 1 and the prime powers (p^k, p prime, k >= 1).
A001045 (0,1,1,3,5,11,21,43,85,171,... ...)
A001057 (0,1,-1,2,-2,3,-3,4,-4,5,... ...) Canonical enumeration of integers: interleaved positive and negative integers with zero prepended.
A001097 (3,5,7,11,13,17,19,29,31,41,... ...)
A001106 (0,1,9,24,46,75,111,154,204,261,... ...) None
A001107 (0,1,10,27,52,85,126,175,232,297,... ...) None
A001109 (0,1,6,35,204,1189,6930,40391,235416,1372105,... ...) a(n)^2 is a triangular number
A001110 (0,1,36,1225,41616,1413721,48024900,1631432881,55420693056,1882672131025,... ...) Square triangular numbers: numbers that are both triangular and square
A001122 (3,5,11,13,19,29,37,53,59,61,... ...) Primes with primitive root 2.
A001146 (2,4,16,256,65536,4294967296,18446744073709551616,340282366920938463463374607431768211456,115792089237316195423570985008687907853269984665640564039457584007913129639936,13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084096,... ...) 2^(2^n)
A001155 (0,10,1110,3110,132110,1113122110,311311222110,13211321322110,1113122113121113222110,31131122211311123113322110,... ...) Describe the previous term! (method A - initial term is 0).
A001175 (1,3,8,6,20,24,16,12,24,60,... ...) Pisano period
A001221 (0,1,1,1,1,2,1,1,1,2,... ...) Number of distinct primes dividing n
A001222 (0,1,1,2,1,2,1,3,2,2,... ...) Number of prime divisors of n counted with multiplicity
A001223 (1,2,2,4,2,4,2,4,6,2,... ...)
A001248 (4,9,25,49,121,169,289,361,529,841,... ...) Square of primes
A001318 (0,1,2,5,7,12,15,22,26,35,... ...) Generalized pentagonal numbers: n*(3*n-1)/2, n=0, +- 1, +- 2, +- 3, ....
A001348 (3,7,31,127,2047,8191,131071,524287,8388607,536870911,... ...) Mersenne numbers: 2^p - 1, where p is prime.
A001359 (3,5,11,17,29,41,59,71,101,107,... ...) Lesser of twin primes.
A001694 (1,4,8,9,16,25,27,32,36,49,... ...) powerful numbers
A001771 (1,5,9,17,21,29,45,177,... ...) Numbers n such that 7*2^n-1 is prime
A001913 (7,17,19,23,29,47,59,61,97,109,... ...) Primes with primitive root 10.
A001918 (1,2,2,3,2,2,3,2,5,2,... ...) Least positive primitive root of n-th prime. )
A002064 (1,3,9,25,65,161,385,897,2049,4609,... ...) Cullen numbers
A002088 (0,1,2,4,6,10,12,18,22,28,... ...)
A002093 (1,2,3,4,6,8,10,12,16,18,... ...) Highly abundant numbers: numbers n such that sigma(n) > sigma(m) for all m < n.
A002110 (1,2,6,30,210,2310,30030,510510,9699690,223092870,... ...) Primorial numbers (first definition): product of first n primes
A002182 (1,2,4,6,12,24,36,48,60,120,... ...) Highly composite numbers, definition (1): where d(n), the number of divisors of n (A000005), increases to a record.
A002235 (0,1,2,3,4,6,7,11,18,34,... ...) Numbers n such that 3*2^n-1 is prime
A002275 (0,1,11,111,1111,11111,111111,1111111,11111111,111111111,... ...) Repunits: (10^n - 1)/9. Often denoted by R_n.
A002322 (1,1,2,2,4,2,6,2,6,4,... ...) Reduced totient function psi(n): least k such that x^k == 1 (mod n) for all x prime to n also known as the Carmichael lambda function (exponent of unit group mod n) also called the universal exponent of n.
A002385 (2,3,5,7,11,101,131,151,181,191,... ...) Palindromic primes: prime numbers whose decimal expansion is a palindrome.
A003132 (0,1,4,9,16,25,36,49,64,81,... ...) Sum of squares of digits of n.
A003401 (1,2,3,4,5,6,8,10,12,15,... ...) Values of n for which a regular polygon with n sides can be constructed with ruler and compass
A003592 (1,2,4,5,8,10,16,20,25,32,... ...) Numbers of the form 2^i*5^j with i, j >= 0.
A003893 (0,1,1,2,3,5,8,3,1,4,... ...) Fibonacci numbers modulo 10
A004042 (0.0,142857,5882352941176470,526315789473684210,4347826086956521739130,3448275862068965517241379310,2127659574468085106382978723404255319148936170,1694915254237288135593220338983050847457627118644067796610,163934426229508196721311475409836065573770491803278688524590,103092783505154639175257731958762886597938144329896907216494845360824742268041237113402061855670,... ...) Periods of reciprocals of A006883, starting with first nonzero digit.
A004169 (7,9,11,13,14,18,19,21,22,23,... ...) Values of n for which a regular polygon with n sides cannot be constructed with ruler and compass
A005101 (12,18,20,24,30,36,40,42,48,54,... ...) Abundant numbers (sum of divisors of n exceeds 2n).
A005117 (1,2,3,5,6,7,10,11,13,14,... ...)
A005132 (0,1,3,6,2,7,13,20,12,21,... ...)
A005150 (1,11,21,1211,111221,312211,13112221,1113213211,31131211131221,13211311123113112211,... ...) Look and Say sequence: describe the previous term! (method A - initial term is 1).
A005151 (1,11,21,1112,3112,211213,312213,212223,114213,31121314,... ...) Summarize the previous term! (in increasing order).
A005188 (1,2,3,4,5,6,7,8,9,153,... ...) Armstrong (or Plus Perfect, or narcissistic) numbers: n-digit numbers equal to sum of n-th powers of their digits
A005234 (2,3,5,7,11,31,379,1019,1021,2657,... ...) Primorial primes: primes p such that 1 + product of primes up to p is prime
A005349 (0,0,0,0,0,0,0,0,0,0,... ...) Niven (or Harshad) numbers: numbers that are divisible by the sum of their digits.
A005408 (1,3,5,7,9,11,13,15,17,19,... ...) The odd numbers: a(n) = 2n+1.
A005541 (0,1,2,4,10,17,50,170,184,194,... ...) Numbers n such that 8*3^n-1 is prime
A005728 (1,2,3,5,7,11,13,19,23,29,... ...) Number of fractions in Farey series of order n.
A005843 (0,2,4,6,8,10,12,14,16,18,... ...) The even numbers: a(n) = 2n
A006512 (5,7,13,19,31,43,61,73,103,109,... ...) Greater of twin primes.
A006521 (1,3,9,27,81,171,243,513,729,1539,... ...) Numbers n such that n divides 2^n + 1.
A006530 (1,2,3,2,5,3,7,2,3,5,... ...) Gpf(n): greatest prime dividing n, for n >= 2; a(1)=1.
A006567 (13,17,31,37,71,73,79,97,107,113,... ...) Emirps (primes whose reversal is a different prime).
A006715 (3,13,1113,3113,132113,1113122113,311311222113,13211321322113,1113122113121113222113,31131122211311123113322113,... ...) Describe the previous term! (method A - initial term is 3).
A006751 (2,12,1112,3112,132112,1113122112,311311222112,13211321322112,1113122113121113222112,31131122211311123113322112,... ...) Describe the previous term! (method A - initial term is 2).
A006862 (2,3,7,31,211,2311,30031,510511,9699691,223092871,... ...) Euclid numbers: 1 + product of the first n primes.
A006881 (6,10,14,15,21,22,26,33,34,35,... ...) Numbers that are the product of two distinct primes.
A006883 (2,7,17,19,23,29,47,59,61,97,... ...) Long period primes: the decimal expansion of 1/p has period p-1.
A006960 (196,887,1675,7436,13783,52514,94039,187088,1067869,10755470,... ...)
A007088 (0,1,10,11,100,101,110,111,1000,1001,... ...) The binary numbers: numbers written in base 2
A007318 (1,1,1,1,2,1,1,3,3,1,... ...)
A007500 (2,3,5,7,11,13,17,31,37,71,... ...) Primes whose reversal in base 10 is also prime
A007504 (2,5,10,17,28,41,58,77,100,129,... ...)
A007505 (2,5,11,23,47,191,383,6143,786431,51539607551,... ...) Thabit primes of form 3*2^n -1.
A007508 (2,8,35,205,1224,8169,... ...) Number of twin prime pairs below 10^n.
A007510 (2,23,37,47,53,67,79,83,89,97,... ...) Single (or isolated or non-twin) primes: Primes p such that neither p-2 nor p+2 is prime
A007770 (1,7,10,13,19,23,28,31,32,44,... ...) Happy numbers: numbers whose trajectory under iteration of sum of squares of digits map (see A003132) includes 1.
A007953 (0,1,2,3,4,5,6,7,8,9,... ...) sum of digits
:param num: number
:param f: int power or function applied to each digit
:param base: optional base
:return: sum of f(digits) of num
digsum(num) -> sum of digits
digsum(num,base=2) -> number of 1 bits in binary represenation of num
digsum(num,2) -> sum of the squares of digits
digsum(num,f=lambda x:x**x) -> sum of the digits elevaed to their own power
A008460 (6,36,45,41,17,50,25,29,85,89,... ...) Take sum of squares of digits of previous term, starting with 6
A008462 (8,64,52,29,85,89,145,42,20,4,... ...) Take sum of squares of digits of previous term, starting with 8
A008463 (9,81,65,61,37,58,89,145,42,20,... ...) Take sum of squares of digits of previous term, starting with 9
A008578 (1,2,3,5,7,11,13,17,19,23,... ...) Prime numbers at the beginning of the 20th century (today 1 is no longer regarded as a prime).
A008587 (0,5,10,15,20,25,30,35,40,45,... ...) Multiples of 5
A008589 (0,7,14,21,28,35,42,49,56,63,... ...) Multiples of 7
A008683 (1,-1,-1,0,-1,1,-1,0,0,1,... ...) Möbius (or Moebius) function mu(n).
mu(1) = 1;
mu(n) = (-1)^k if n is the product of k different primes;
otherwise mu(n) = 0.
A009096 (12,24,30,36,40,48,56,60,60,70,... ...)
A009994 (0,1,2,3,4,5,6,7,8,9,... ...) Numbers with digits in nondecreasing order.
A009996 (0,1,2,3,4,5,6,7,8,9,... ...) Numbers with digits in nonincreasing order.
A010861 (22,22,22,22,22,22,22,22,22,22,... ...) Describe the previous term! (method A - initial term is 22)
A018239 (2,3,7,31,211,2311,200560490131,1719620105458406433483340568317543019584575635895742560438771105058321655238562613083979651479555788009994557822024565226932906295208262756822275663694111,20404068993016374194542464172774607695659797117423121913227131032339026169175929902244453757410468728842929862271605567818821685490676661985389839958622802465986881376139404138376153096103140834665563646740160279755212317501356863003638612390661668406235422311783742390510526587257026500302696834793248526734305801634165948702506367176701233298064616663553716975429048751575597150417381063934255689124486029492908966644747931,20832554441869718052627855920402874457268652856889007473404900784018145718728624430191587286316088572148631389379309284743016940885980871887083026597753881317772605885038331625282052311121306792193540483321703645630071776168885357126715023250865563442766366180331200980711247645589424056809053468323906745795726223468483433625259000887411959197323973613488345031913058775358684690576146066276875058596100236112260054944287636531,... ...) Primorial primes: form product of first k primes and add 1, then reject unless prime.
A020449 (11,101,10111,101111,1011001,1100101,10010101,10011101,10100011,10101101,... ...) Primes that contain digits 0 and 1 only.
A020882 (5,13,17,25,29,37,41,53,61,65,... ...) None
A023108 (196,295,394,493,592,689,691,788,790,879,... ...)
A023109 (0,10,19,59,69,166,79,188,193,1397,... ...)
A023200 (3,7,13,19,37,43,67,79,97,103,... ...) Lesser of cousin primes.
A023201 (5,7,11,13,17,23,31,37,41,47,... ...) Sexy Primes : Numbers n such that n and n + 6 are both prime (sexy primes)
A023271 (5,11,41,61,251,601,641,1091,1481,1601,... ...)
A024406 (6,30,60,84,180,210,210,330,504,546,... ...)
A027641 (1,-1,1,0,-1,0,1,0,-1,0,... ...) None
A027642 (1,2,6,1,30,1,42,1,30,1,... ...) None
A030078 (8,27,125,343,1331,2197,4913,6859,12167,24389,... ...) Cubes of primes
A030513 (6,8,10,14,15,21,22,26,27,33,... ...) Numbers with 4 divisors
A033484 (1,4,10,22,46,94,190,382,766,1534,... ...) a(n)=3*2^n-2
A033665 (0,0,0,0,0,0,0,0,0,0,... ...) Number of 'Reverse and Add' steps needed to reach a palindrome starting at n, or -1 if n never reaches a palindrome.
A033880 (-1,-1,-2,-1,-4,0,-6,-1,-5,-2,... ...) None
A033948 (1,2,3,4,5,6,7,9,10,11,... ...) numbers that have a primitive_root
A034386 (1,1,2,6,6,30,30,210,210,210,... ...) Primorial numbers (second definition): n# = product of primes <= n
A035533 (3,32,292,2608,23327,... ...) Number of numbers up to 10^n with exactly 4 divisors
A036275 (0.0,0.0,3,0.0,0.0,6,142857,0.0,1,0.0,... ...) The periodic part of the decimal expansion of 1/n. Any initial 0's are to be placed at end of cycle.
A037074 (15,35,143,323,899,1763,3599,5183,10403,11663,... ...) Numbers that are the product of a pair of twin primes
A045918 (10,11,12,13,14,15,16,17,18,19,... ...) Describe n. Also called the "Say What You See" or "Look and Say" sequence LS(n).
A046034 (2,3,5,7,22,23,25,27,32,33,... ...) Numbers whose digits are primes.
A046086 (3,5,8,7,20,12,9,28,11,33,... ...) None
A046117 (11,13,17,19,23,29,37,43,47,53,... ...) Values of p+6 such that p and p+6 are both prime (sexy primes)
A046118 (7,17,31,47,67,97,101,151,167,227,... ...)
A046119 (13,23,37,53,73,103,107,157,173,233,... ...)
A046120 (19,29,43,59,79,109,113,163,179,239,... ...)
A046122 (11,17,47,67,257,607,647,1097,1487,1607,... ...)
A046123 (17,23,53,73,263,613,653,1103,1493,1613,... ...)
A046124 (23,29,59,79,269,619,659,1109,1499,1619,... ...)
A046132 (7,11,17,23,41,47,71,83,101,107,... ...) Greater of cousin primes
A046865 (0,1,3,9,13,15,25,39,69,165,... ...) Numbers n such that 4*5^n-1 is prime
A046866 (1,2,7,18,55,69,87,119,141,189,... ...) Numbers n such that 6*7^n-1 is prime
A046867 (1,3,37,119,255,355,371,497,... ...) Numbers n such that 10*11^n-1 is prime
A050278 (1023456789,1023456798,1023456879,1023456897,1023456978,1023456987,1023457689,1023457698,1023457869,1023457896,... ...)
A050523 (13,223,3583,917503,14680063,3758096383,246290604621823,1340933598257652751063553648756520535666396731910651903 ...) Primes of the form 7*2^n-1
A050935 (0,0,1,1,1,0,-1,-2,-2,-1,... ...) a(1)=0, a(2)=0, a(3)=1, a(n+1) = a(n) - a(n-2).
A051005 (2,2,3,5,89,29927,... ...) prime values of PartitionsQ.
A051179 (1,3,15,255,65535,4294967295,18446744073709551615,340282366920938463463374607431768211455,115792089237316195423570985008687907853269984665640564039457584007913129639935,13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006084095,... ...) Sequence+-1
A051624 (0,1,12,33,64,105,156,217,288,369,... ...) None
A051626 (0,0,1,0,0,1,6,0,1,0,... ...) Length of the period of decimal representation of 1/n, or 0 if 1/n terminates.
A051682 (0,1,11,30,58,95,141,196,260,333,... ...) None
A051865 (0,1,13,36,70,115,171,238,316,405,... ...) None
A051866 (0,1,14,39,76,125,186,259,344,441,... ...) None
A051867 (0,1,15,42,82,135,201,280,372,477,... ...) None
A051868 (0,1,16,45,88,145,216,301,400,513,... ...) None
A051869 (0,1,17,48,94,155,231,322,428,549,... ...) None
A051870 (0,1,18,51,100,165,246,343,456,585,... ...) None
A051871 (0,1,19,54,106,175,261,364,484,621,... ...) None
A051872 (0,1,20,57,112,185,276,385,512,657,... ...) None
A051873 (0,1,21,60,118,195,291,406,540,693,... ...) None
A051874 (0,1,22,63,124,205,306,427,568,729,... ...) None
A051875 (0,1,23,66,130,215,321,448,596,765,... ...) None
A051876 (0,1,24,69,136,225,336,469,624,801,... ...) None
A055012 (0,1,8,27,64,125,216,343,512,729,... ...) Sum of cubes of the digits of n written in base 10.
A056725 (1,3,7,19,29,37,93,... ...) Numbers n such that 9*10^n-1 is prime
A057165 (1,2,3,5,6,7,9,11,13,15,... ...)
A057166 (4,8,10,12,14,16,20,22,23,25,... ...)
A057588 (1,5,29,209,2309,30029,510509,9699689,223092869,6469693229,... ...) Kummer numbers: -1 + product of first n consecutive primes.
A060305 (3,8,20,16,10,28,36,18,48,14,... ...) Period of Fibonacci numbers mod prime(n).
A061602 (1,1,2,6,24,120,720,5040,40320,362880,... ...) Sum of factorials of the digits of n
A065091 (3,5,7,11,13,17,19,23,29,31,... ...) The odd prime numbers
A067500 (1,3,9,27,81,243,19683,59049,177147,1594323,... ...) Powers of 3 with digit sum also a power of 3.
A070635 (0,0,0,0,0,0,0,0,0,0,... ...) a(n) = n mod (sum of digits of n).
A077800 (3,5,5,7,11,13,17,19,29,31,... ...)
A079906 (1,2,6,7,11,23,33,48,68,79,... ...) Numbers n such that 5*6^n-1 is prime
A079907 (1,2,21,25,33,54,78,235,... ...) Numbers n such that 11*12^n-1 is prime
A080709 (4,16,37,58,89,145,42,20,4,16,... ...) Take sum of squares of digits of previous term, starting with 4
A082115 (0,1,1,2,0,2,2,1,0,1,... ...) Fibonacci numbers modulo 3
A089675 (1,2,3,17,140,990,... ...) Numbers n such that 9*R_n - 2 is a prime number, where R_n = 11...1 is the repunit (A002275) of length n.Also numbers n such that 10^n - 3 is prime
A090748 (1,2,4,6,12,16,18,30,60,88,... ...) Numbers n such that 2^(n+1) - 1 is prime.
A118905 (7,14,17,21,23,28,31,34,35,41,... ...)
A121727 (5,13,17,25,41,29,37,61,65,85,... ...) None
A122065 (74169,183,74,65,61,37,58,89,145,42,... ...) Take sum of squares of digits of previous term, starting with 74169
A133500 (0,1,2,3,4,5,6,7,8,9,... ...) The powertrain or power train map
A134816 (1,1,1,2,2,3,4,5,7,9,... ...) Padovan's spiral numbers.
A139566 (15,26,40,16,37,58,89,145,42,20,... ...) Take sum of squares of digits of previous term, starting with 15
A152054 (101,102,103,104,105,106,107,108,109,120,... ...) Bouncy numbers (numbers whose digits form a strictly non-monotonic sequence).
A164555 (1,1,1,0,-1,0,1,0,-1,0,... ...) None
A167149 (0,1,10000,29997,59992,99985,149976,209965,279952,359937,... ...) None
Content source: goulu/Goulib
Similar notebooks: