See https://nbviewer.jupyter.org/github/ipython/ipython/blob/2.x/examples/Notebook/Index.ipynb
It's dead simple. First, install docker. Next, type the command below in a terminal and press enter.
docker run goude/jupyter-virtualenv start-jupyter.sh
Finally, point your browser to http://localhost:8888.
In [1]:
import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
import os
In [2]:
import pyfiglet
f = pyfiglet.Figlet()
print(f.renderText('Hello, World!'))
https://blog.dominodatalab.com/lesser-known-ways-of-using-notebooks/
In [3]:
from wordcloud import WordCloud, STOPWORDS
wordlist = !pip freeze
wordcloud = WordCloud(stopwords=STOPWORDS, background_color='white').generate(" ".join(wordlist))
plt.figure(figsize=(15,10))
plt.figure()
plt.imshow(wordcloud)
plt.axis('off')
plt.show()
In [4]:
from IPython.display import Math
Math(r'F(k) = \int_{-\infty}^{\infty} f(x) e^{2\pi i k} dx')
Out[4]:
In [5]:
%%latex
\begin{align}
\nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} & = \frac{4\pi}{c}\vec{\mathbf{j}} \\
\nabla \cdot \vec{\mathbf{E}} & = 4 \pi \rho \\
\nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} & = \vec{\mathbf{0}} \\
\nabla \cdot \vec{\mathbf{B}} & = 0
\end{align}
In [6]:
#from matplotlib import pyplot as plt
from matplotlib_venn import venn2, venn2_circles
# Subset sizes
s = (
2, # Ab
3, # aB
1, # AB
)
v = venn2(subsets=s, set_labels=('A', 'B'))
# Subset labels
v.get_label_by_id('10').set_text('A but not B')
v.get_label_by_id('01').set_text('B but not A')
v.get_label_by_id('11').set_text('A and B')
# Subset colors
#v.get_patch_by_id('10').set_color('c')
#v.get_patch_by_id('01').set_color('#993333')
#v.get_patch_by_id('11').set_color('blue')
# Subset alphas
#v.get_patch_by_id('10').set_alpha(0.4)
#v.get_patch_by_id('01').set_alpha(1.0)
#v.get_patch_by_id('11').set_alpha(0.7)
# Border styles
c = venn2_circles(subsets=s, linestyle='solid')
c[0].set_ls('dashed') # Line style
c[0].set_lw(2.0) # Line width
plt.show()
In [7]:
from IPython.display import IFrame
IFrame('http://m.wikipedia.org/?useformat=mobile', width='100%', height=350)
Out[7]:
In [8]:
from IPython.display import Audio
max_time = 3
f1 = 220.0
f2 = 224.0
rate = 8000
L = 3
times = np.linspace(0,L,rate*L)
signal = np.sin(2*np.pi*f1*times) + np.sin(2*np.pi*f2*times)
Audio(data=signal, rate=rate)
Out[8]:
In [9]:
import folium
folium.Map()
Out[9]:
In [10]:
import vincent
vincent.core.initialize_notebook()
from pandas_datareader import data as web
all_data = {}
for ticker in ['AAPL', 'GOOG', 'IBM', 'YHOO', 'MSFT']:
all_data[ticker] = web.get_data_yahoo(ticker, '2010-01-01', '2016-05-01')
price = pd.DataFrame({tic: data['Adj Close']
for tic, data in all_data.items()})
line = vincent.Line(price[['GOOG', 'AAPL']])
line.axis_titles(x='Date', y='Price')
line.legend(title='GOOG vs AAPL')
line.display()