Using Method of Manufactured solutions and solve the Helmholtz equation.
Problem taken from http://www.dealii.org/8.4.1/doxygen/deal.II/step_7.html
In [ ]:
using JuAFEM
using KrylovMethods
const ∇ = Tensors.gradient
const Δ = Tensors.hessian;
In [ ]:
grid = generate_grid(Quadrilateral, (150, 150))
addnodeset!(grid, "dirichlet_boundary", x -> x[1] ≈ 1 || x[2] ≈ 1);
In [ ]:
dim = 2
ip = Lagrange{dim, RefCube, 1}()
qr = QuadratureRule{dim, RefCube}(2)
qr_face = QuadratureRule{dim-1, RefCube}(2)
cellvalues = CellScalarValues(qr, ip);
facevalues = FaceScalarValues(qr_face, ip);
In [ ]:
dh = DofHandler(grid)
push!(dh, :u, 1)
close!(dh)
Out[ ]:
In [ ]:
function u_ana{T}(x::Vec{2, T})
xs = (Vec{2}((-0.5, 0.5)),
Vec{2}((-0.5, -0.5)),
Vec{2}(( 0.5, -0.5)))
σ = 1/8
s = zero(eltype(x))
for i in 1:3
s += exp(- norm(x - xs[i])^2 / σ^2)
end
return max(1e-15 * one(T), s) # Denormals, be gone
end;
In [ ]:
dbc = DirichletBoundaryConditions(dh)
add!(dbc, :u, getnodeset(grid, "dirichlet_boundary"), (x,t) -> u_ana(x))
close!(dbc)
update!(dbc, 0.0)
In [ ]:
K = create_sparsity_pattern(dh);
In [ ]:
function doassemble{dim}(cellvalues::CellScalarValues{dim}, facevalues::FaceScalarValues{dim},
K::SparseMatrixCSC, dh::DofHandler)
b = 1.0
f = zeros(ndofs(dh))
assembler = start_assemble(K, f)
n_basefuncs = getnbasefunctions(cellvalues)
global_dofs = zeros(Int, ndofs_per_cell(dh))
fe = zeros(n_basefuncs) # Local force vector
Ke = zeros(n_basefuncs, n_basefuncs) # Local stiffness mastrix
@inbounds for (cellcount, cell) in enumerate(CellIterator(dh))
fill!(Ke, 0)
fill!(fe, 0)
coords = getcoordinates(cell)
reinit!(cellvalues, cell)
for q_point in 1:getnquadpoints(cellvalues)
dΩ = getdetJdV(cellvalues, q_point)
coords_qp = spatial_coordinate(cellvalues, q_point, coords)
f_true = trace(hessian(u_ana, coords_qp)) + u_ana(coords_qp)
for i in 1:n_basefuncs
δu = shape_value(cellvalues, q_point, i)
∇δu = shape_gradient(cellvalues, q_point, i)
fe[i] += (δu * f_true) * dΩ
for j in 1:n_basefuncs
u = shape_value(cellvalues, q_point, j)
∇u = shape_gradient(cellvalues, q_point, j)
Ke[i, j] += (∇δu ⋅ ∇u + δu * u) * dΩ
end
end
end
for face in 1:nfaces(cell)
if onboundary(cell, face) &&
((cellcount, face) ∈ getfaceset(grid, "left") ||
(cellcount, face) ∈ getfaceset(grid, "bottom"))
reinit!(facevalues, cell, face)
for q_point in 1:getnquadpoints(facevalues)
coords_qp = spatial_coordinate(facevalues, q_point, coords)
n = getnormal(facevalues, q_point)
g = gradient(u_ana, coords_qp) ⋅ n
dΓ = getdetJdV(facevalues, q_point)
for i in 1:n_basefuncs
δu = shape_value(facevalues, q_point, i)
fe[i] += (δu * g) * dΓ
end
end
end
end
celldofs!(global_dofs, cell)
assemble!(assembler, global_dofs, fe, Ke)
end
return K, f
end;
In [ ]:
K, f = doassemble(cellvalues, facevalues, K, dh);
apply!(K, f, dbc)
u = cholfact(Symmetric(K)) \ f;
In [ ]:
vtkfile = vtk_grid("helmholtz", dh, u)
vtk_save(vtkfile)
Out[ ]:
In [ ]:
Base.Test.@test maximum(u) ≈ 0.05637592090022005
println("Helmholtz successful")