In [45]:
%load_ext autoreload
%autoreload 2
import sys
import os
sys.path.append("..")
from sklearn import svm, datasets
from sklearn.grid_search import ParameterGrid, GridSearchCV
from sklearn.base import BaseEstimator, clone
from sklearn.cross_validation import KFold
from sklearn.svm import SVC
import os
import math
import numpy as np
import sklearn.metrics
from multiprocessing import Pool
from functools import partial
import sklearn
from sklearn.preprocessing import MinMaxScaler, LabelBinarizer
from sklearn.metrics import accuracy_score
from sklearn.cross_validation import KFold
from sklearn.preprocessing import MinMaxScaler
from misc.data_api import *
from r2 import *
from misc.config import c
from data_api import *
import cPickle
import pandas as pd
from data_api import *
results_dir = c['RESULTS_DIR']
from scripts.fit_models import *
%matplotlib inline
In [ ]:
In [30]:
glass = fetch_uci_datasets(["glass"])[0]
X, Y = glass.data, glass.target
assert(sklearn.metrics.accuracy_score(R2SVMLearner(seed=3, beta=0.8).fit(X, Y).predict(X), Y) == sklearn.metrics.accuracy_score(R2SVMLearner(seed=3, beta=0.8).fit(X, Y).predict(X), Y))
In [31]:
glass = fetch_uci_datasets(["glass"])[0]
X, Y = glass.data, glass.target
assert(sklearn.metrics.accuracy_score(R2ELMLearner(seed=3, beta=0.8).fit(X, Y).predict(X), Y) == sklearn.metrics.accuracy_score(R2ELMLearner(seed=3, beta=0.8).fit(X, Y).predict(X), Y))
In [47]:
fourclass = fetch_uci_datasets(['fourclass'])[0]
r2svm_exp = cPickle.load(open(os.path.join(results_dir,
'unit_test_r2svm_fourclass',
'unit_test_r2svm_fourclass_uF_rT_b0.10_d7_sT_fNo_.experiment')))
r2svm_params = r2svm_exp['config']['params']
rep_exp = k_fold(R2SVMLearner, r2svm_params, fourclass, exp_name='unit_test', model_name='r2svm', save_model=False)
assert r2svm_exp['config'] == rep_exp['config']
assert r2svm_exp['results'] == rep_exp['results']
In [49]:
fourclass = fetch_uci_datasets(['fourclass'])[0]
svm_exp = cPickle.load(open(os.path.join(results_dir,
'unit_test_svc_fourclass',
'unit_test_svc_fourclass_C1_g0_.experiment')))
svm_params = svm_exp['config']['params']
rep_exp = extern_k_fold(SVC(), svm_params, fourclass, exp_name='unit_test', model_name='svc', save_model=False)
assert svm_exp['config'] == rep_exp['config']
assert svm_exp['results'] == rep_exp['results']
In [69]:
indians = fetch_uci_datasets(['iris'])[0]
indian_params_random = {}
indian_params_random['fit_c'] = 'random'
indian_params_random['use_prev'] = True
indian_params_random['recurrent'] = False
indian_params_random['seed'] = 697
indian_params_random['beta'] = 0.1
indian_params_random['scale'] = True
indian_params_random['fixed_prediction'] = None
In [77]:
results_layer_wise = [k_fold(R2SVMLearner, params=dict({"depth":i+1}, **indian_params_random), all_layers=False, \
data=indians, exp_name="check_cons", model_name="r2svm", store_clf=True, save_model=False)['results']['mean_acc'] \
for i in range(10)]
results_all_layers = [k_fold(R2SVMLearner, params=dict({"depth":i+1}, **indian_params_random), all_layers=True, \
data=indians, exp_name="check_cons", model_name="r2svm", store_clf=True, save_model=False)['results']['mean_acc'] \
for i in range(10)]
assert(all(max(results_layer_wise[0:i+1]) == results_all_layers[i] for i in range(10) ) )
In [ ]: