Import the necessary libraries
In [1]:
%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
from skcycling.data_management import Rider
from skcycling.utils import load_power_from_fit
from skcycling.metrics import normalized_power_score
from skcycling.metrics import intensity_factor_ftp_score
from skcycling.metrics import intensity_factor_pma_score
from skcycling.metrics import training_stress_ftp_score
from skcycling.metrics import training_stress_pma_score
from skcycling.metrics import training_stress_pma_grappe_score
from skcycling.metrics import training_stress_ftp_grappe_score
from skcycling.metrics import pma2ftp
Read a file and compute the metrics
In [2]:
filename = '../../data/user_1/2016/2016-05-24-19-39-33.fit'
ride_power, date = load_power_from_fit(filename)
# Define the PMA and the FTP
pma = 400.
ftp = pma2ftp(pma)
# Compute the different metrics
print 'The normalized power score is {:.2f} W'.format(normalized_power_score(ride_power, pma))
print 'The intensity factor is {:.2f}'.format(intensity_factor_ftp_score(ride_power, ftp))
print 'The intensity factor is {:.2f}'.format(intensity_factor_pma_score(ride_power, pma))
print 'The training stress score is {:.2f}'.format(training_stress_ftp_score(ride_power, ftp))
print 'The training stress score is {:.2f}'.format(training_stress_pma_score(ride_power, pma))
print 'The training stress score ESIE is {:.2f}'.format(training_stress_pma_grappe_score(ride_power, pma))
print 'The training stress score ESIE is {:.2f}'.format(training_stress_ftp_grappe_score(ride_power, ftp))