RELU: Nbr of updates: 1, Minibatch Loss= 2.008754, Training Accuracy= 0.35156
SNN: Nbr of updates: 1, Minibatch Loss= 2.451197, Training Accuracy= 0.39844
RELU: Nbr of updates: 2, Minibatch Loss= 1.732718, Training Accuracy= 0.37500
SNN: Nbr of updates: 2, Minibatch Loss= 2.160526, Training Accuracy= 0.65625
RELU: Nbr of updates: 3, Minibatch Loss= 1.752255, Training Accuracy= 0.39844
SNN: Nbr of updates: 3, Minibatch Loss= 1.601260, Training Accuracy= 0.53125
RELU: Nbr of updates: 4, Minibatch Loss= 1.605729, Training Accuracy= 0.53906
SNN: Nbr of updates: 4, Minibatch Loss= 0.978341, Training Accuracy= 0.70312
RELU: Nbr of updates: 5, Minibatch Loss= 1.555425, Training Accuracy= 0.51562
SNN: Nbr of updates: 5, Minibatch Loss= 0.645711, Training Accuracy= 0.82031
RELU: Nbr of updates: 6, Minibatch Loss= 1.313229, Training Accuracy= 0.67969
SNN: Nbr of updates: 6, Minibatch Loss= 0.401476, Training Accuracy= 0.90625
RELU: Nbr of updates: 7, Minibatch Loss= 1.203895, Training Accuracy= 0.77344
SNN: Nbr of updates: 7, Minibatch Loss= 0.453578, Training Accuracy= 0.92188
RELU: Nbr of updates: 8, Minibatch Loss= 1.089910, Training Accuracy= 0.85938
SNN: Nbr of updates: 8, Minibatch Loss= 0.297481, Training Accuracy= 0.95312
RELU: Nbr of updates: 9, Minibatch Loss= 1.017870, Training Accuracy= 0.79688
SNN: Nbr of updates: 9, Minibatch Loss= 0.365949, Training Accuracy= 0.91406
RELU: Nbr of updates: 10, Minibatch Loss= 1.070305, Training Accuracy= 0.76562
SNN: Nbr of updates: 10, Minibatch Loss= 0.405422, Training Accuracy= 0.90625
RELU: Nbr of updates: 11, Minibatch Loss= 0.985618, Training Accuracy= 0.79688
SNN: Nbr of updates: 11, Minibatch Loss= 0.460914, Training Accuracy= 0.88281
RELU: Nbr of updates: 12, Minibatch Loss= 0.875668, Training Accuracy= 0.72656
SNN: Nbr of updates: 12, Minibatch Loss= 0.349492, Training Accuracy= 0.90625
RELU: Nbr of updates: 13, Minibatch Loss= 1.041480, Training Accuracy= 0.76562
SNN: Nbr of updates: 13, Minibatch Loss= 0.436600, Training Accuracy= 0.89062
RELU: Nbr of updates: 14, Minibatch Loss= 0.836483, Training Accuracy= 0.83594
SNN: Nbr of updates: 14, Minibatch Loss= 0.356240, Training Accuracy= 0.92188
RELU: Nbr of updates: 15, Minibatch Loss= 0.824995, Training Accuracy= 0.81250
SNN: Nbr of updates: 15, Minibatch Loss= 0.407508, Training Accuracy= 0.87500
RELU: Nbr of updates: 16, Minibatch Loss= 0.739613, Training Accuracy= 0.85156
SNN: Nbr of updates: 16, Minibatch Loss= 0.289174, Training Accuracy= 0.92969
RELU: Nbr of updates: 17, Minibatch Loss= 0.782138, Training Accuracy= 0.80469
SNN: Nbr of updates: 17, Minibatch Loss= 0.314916, Training Accuracy= 0.91406
RELU: Nbr of updates: 18, Minibatch Loss= 0.687675, Training Accuracy= 0.85156
SNN: Nbr of updates: 18, Minibatch Loss= 0.243602, Training Accuracy= 0.94531
RELU: Nbr of updates: 19, Minibatch Loss= 0.647239, Training Accuracy= 0.82812
SNN: Nbr of updates: 19, Minibatch Loss= 0.205704, Training Accuracy= 0.96094
RELU: Nbr of updates: 20, Minibatch Loss= 0.673955, Training Accuracy= 0.78906
SNN: Nbr of updates: 20, Minibatch Loss= 0.293074, Training Accuracy= 0.92188
RELU: Nbr of updates: 21, Minibatch Loss= 0.643871, Training Accuracy= 0.84375
SNN: Nbr of updates: 21, Minibatch Loss= 0.305403, Training Accuracy= 0.92969
RELU: Nbr of updates: 22, Minibatch Loss= 0.577555, Training Accuracy= 0.91406
SNN: Nbr of updates: 22, Minibatch Loss= 0.225528, Training Accuracy= 0.96875
RELU: Nbr of updates: 23, Minibatch Loss= 0.539012, Training Accuracy= 0.90625
SNN: Nbr of updates: 23, Minibatch Loss= 0.207042, Training Accuracy= 0.96094
RELU: Nbr of updates: 24, Minibatch Loss= 0.595193, Training Accuracy= 0.85938
SNN: Nbr of updates: 24, Minibatch Loss= 0.297265, Training Accuracy= 0.89844
RELU: Nbr of updates: 25, Minibatch Loss= 0.610190, Training Accuracy= 0.83594
SNN: Nbr of updates: 25, Minibatch Loss= 0.255643, Training Accuracy= 0.95312
RELU: Nbr of updates: 26, Minibatch Loss= 0.708689, Training Accuracy= 0.69531
SNN: Nbr of updates: 26, Minibatch Loss= 0.161673, Training Accuracy= 0.98438
RELU: Nbr of updates: 27, Minibatch Loss= 0.702952, Training Accuracy= 0.79688
SNN: Nbr of updates: 27, Minibatch Loss= 0.215801, Training Accuracy= 0.94531
RELU: Nbr of updates: 28, Minibatch Loss= 0.470672, Training Accuracy= 0.88281
SNN: Nbr of updates: 28, Minibatch Loss= 0.269345, Training Accuracy= 0.91406
RELU: Nbr of updates: 29, Minibatch Loss= 0.554051, Training Accuracy= 0.83594
SNN: Nbr of updates: 29, Minibatch Loss= 0.296727, Training Accuracy= 0.92188
RELU: Nbr of updates: 30, Minibatch Loss= 0.504638, Training Accuracy= 0.84375
SNN: Nbr of updates: 30, Minibatch Loss= 0.227030, Training Accuracy= 0.93750
RELU: Nbr of updates: 31, Minibatch Loss= 0.566984, Training Accuracy= 0.85938
SNN: Nbr of updates: 31, Minibatch Loss= 0.212100, Training Accuracy= 0.96875
RELU: Nbr of updates: 32, Minibatch Loss= 0.505076, Training Accuracy= 0.86719
SNN: Nbr of updates: 32, Minibatch Loss= 0.224962, Training Accuracy= 0.92188
RELU: Nbr of updates: 33, Minibatch Loss= 0.487980, Training Accuracy= 0.87500
SNN: Nbr of updates: 33, Minibatch Loss= 0.192593, Training Accuracy= 0.96094
RELU: Nbr of updates: 34, Minibatch Loss= 0.377008, Training Accuracy= 0.93750
SNN: Nbr of updates: 34, Minibatch Loss= 0.164228, Training Accuracy= 0.96094
RELU: Nbr of updates: 35, Minibatch Loss= 0.468827, Training Accuracy= 0.89062
SNN: Nbr of updates: 35, Minibatch Loss= 0.222637, Training Accuracy= 0.92969
RELU: Nbr of updates: 36, Minibatch Loss= 0.456475, Training Accuracy= 0.90625
SNN: Nbr of updates: 36, Minibatch Loss= 0.223814, Training Accuracy= 0.92969
RELU: Nbr of updates: 37, Minibatch Loss= 0.521786, Training Accuracy= 0.83594
SNN: Nbr of updates: 37, Minibatch Loss= 0.289590, Training Accuracy= 0.91406
RELU: Nbr of updates: 38, Minibatch Loss= 0.512233, Training Accuracy= 0.80469
SNN: Nbr of updates: 38, Minibatch Loss= 0.254801, Training Accuracy= 0.92188
RELU: Nbr of updates: 39, Minibatch Loss= 0.462405, Training Accuracy= 0.84375
SNN: Nbr of updates: 39, Minibatch Loss= 0.192647, Training Accuracy= 0.95312
RELU: Nbr of updates: 40, Minibatch Loss= 0.398073, Training Accuracy= 0.89844
SNN: Nbr of updates: 40, Minibatch Loss= 0.127224, Training Accuracy= 0.97656
RELU: Nbr of updates: 41, Minibatch Loss= 0.454393, Training Accuracy= 0.85156
SNN: Nbr of updates: 41, Minibatch Loss= 0.204394, Training Accuracy= 0.92969
RELU: Nbr of updates: 42, Minibatch Loss= 0.455688, Training Accuracy= 0.88281
SNN: Nbr of updates: 42, Minibatch Loss= 0.198009, Training Accuracy= 0.95312
RELU: Nbr of updates: 43, Minibatch Loss= 0.402138, Training Accuracy= 0.89062
SNN: Nbr of updates: 43, Minibatch Loss= 0.170651, Training Accuracy= 0.96094
RELU: Nbr of updates: 44, Minibatch Loss= 0.430634, Training Accuracy= 0.89062
SNN: Nbr of updates: 44, Minibatch Loss= 0.216837, Training Accuracy= 0.96094
RELU: Nbr of updates: 45, Minibatch Loss= 0.389273, Training Accuracy= 0.91406
SNN: Nbr of updates: 45, Minibatch Loss= 0.180505, Training Accuracy= 0.96094
RELU: Nbr of updates: 46, Minibatch Loss= 0.409469, Training Accuracy= 0.91406
SNN: Nbr of updates: 46, Minibatch Loss= 0.193067, Training Accuracy= 0.94531
RELU: Nbr of updates: 47, Minibatch Loss= 0.368824, Training Accuracy= 0.89062
SNN: Nbr of updates: 47, Minibatch Loss= 0.158238, Training Accuracy= 0.97656
RELU: Nbr of updates: 48, Minibatch Loss= 0.388534, Training Accuracy= 0.89844
SNN: Nbr of updates: 48, Minibatch Loss= 0.229685, Training Accuracy= 0.93750
RELU: Nbr of updates: 49, Minibatch Loss= 0.321354, Training Accuracy= 0.94531
SNN: Nbr of updates: 49, Minibatch Loss= 0.143143, Training Accuracy= 0.96875
RELU: Nbr of updates: 50, Minibatch Loss= 0.356414, Training Accuracy= 0.90625
SNN: Nbr of updates: 50, Minibatch Loss= 0.160477, Training Accuracy= 0.96094
Optimization Finished!
ReLU: Testing Accuracy: 0.859375
SNN: Testing Accuracy: 0.916016