In [66]:
%matplotlib inline
import os
import pandas as pd
import matplotlib.pyplot as plt
In [84]:
data = '/Users/skhederian/restaurant-health/the_final_countdown.csv'
names = [
"_id",
"restaurant_name",
"address_full",
"business_id",
"categories",
"city",
"review_count",
"inspection_date",
"stars",
"latitude",
"longitude",
"attributes",
"open",
"neighborhoods",
"violations"
]
df = pd.read_csv(data)
df.head(1000)
Out[84]:
Unnamed: 0
_id
restaurant_name
address_full
business_id
categories
city
review_count
inspection_date
stars
...
creditcards
pricerange
drivethru
tourist
classy
hipster
latenight
upscale
divey
Neighborhoods
0
0
ObjectId(581151a3b6729e7e313418da)
TLC WINGS & GRILL
9101 PINEVILLE-MATTHEWS RD
lX3XYcMWoRlHjrmkoGNefQ
["Chicken Wings","Restaurants"]
2
29
1/10/2012
4.0
...
1
1
0
0
0
0
0
0
0
none
1
1
ObjectId(581151a3b6729e7e313418da)
TLC WINGS & GRILL
9101 PINEVILLE-MATTHEWS RD
lX3XYcMWoRlHjrmkoGNefQ
["Chicken Wings","Restaurants"]
2
29
4/20/2012
4.0
...
1
1
0
0
0
0
0
0
0
none
2
2
ObjectId(581151a3b6729e7e313418da)
TLC WINGS & GRILL
9101 PINEVILLE-MATTHEWS RD
lX3XYcMWoRlHjrmkoGNefQ
["Chicken Wings","Restaurants"]
2
29
8/3/2012
4.0
...
1
1
0
0
0
0
0
0
0
none
3
3
ObjectId(581151a3b6729e7e313418da)
TLC WINGS & GRILL
9101 PINEVILLE-MATTHEWS RD
lX3XYcMWoRlHjrmkoGNefQ
["Chicken Wings","Restaurants"]
2
29
1/24/2013
4.0
...
1
1
0
0
0
0
0
0
0
none
4
4
ObjectId(581151a3b6729e7e313418da)
TLC WINGS & GRILL
9101 PINEVILLE-MATTHEWS RD
lX3XYcMWoRlHjrmkoGNefQ
["Chicken Wings","Restaurants"]
2
29
4/22/2013
4.0
...
1
1
0
0
0
0
0
0
0
none
5
5
ObjectId(581151a3b6729e7e313418da)
TLC WINGS & GRILL
9101 PINEVILLE-MATTHEWS RD
lX3XYcMWoRlHjrmkoGNefQ
["Chicken Wings","Restaurants"]
2
29
10/4/2013
4.0
...
1
1
0
0
0
0
0
0
0
none
6
6
ObjectId(581151a3b6729e7e313418da)
TLC WINGS & GRILL
9101 PINEVILLE-MATTHEWS RD
lX3XYcMWoRlHjrmkoGNefQ
["Chicken Wings","Restaurants"]
2
29
4/3/2014
4.0
...
1
1
0
0
0
0
0
0
0
none
7
7
ObjectId(581151a3b6729e7e313418da)
TLC WINGS & GRILL
9101 PINEVILLE-MATTHEWS RD
lX3XYcMWoRlHjrmkoGNefQ
["Chicken Wings","Restaurants"]
2
29
1/9/2015
4.0
...
1
1
0
0
0
0
0
0
0
none
8
8
ObjectId(581151a3b6729e7e313418da)
TLC WINGS & GRILL
9101 PINEVILLE-MATTHEWS RD
lX3XYcMWoRlHjrmkoGNefQ
["Chicken Wings","Restaurants"]
2
29
7/1/2015
4.0
...
1
1
0
0
0
0
0
0
0
none
9
9
ObjectId(581151a3b6729e7e313418da)
TLC WINGS & GRILL
9101 PINEVILLE-MATTHEWS RD
lX3XYcMWoRlHjrmkoGNefQ
["Chicken Wings","Restaurants"]
2
29
2/3/2016
4.0
...
1
1
0
0
0
0
0
0
0
none
10
10
ObjectId(581151a3b6729e7e313418da)
TLC WINGS & GRILL
9101 PINEVILLE-MATTHEWS RD
lX3XYcMWoRlHjrmkoGNefQ
["Chicken Wings","Restaurants"]
2
29
8/15/2016
4.0
...
1
1
0
0
0
0
0
0
0
none
11
11
ObjectId(581151a3b6729e7e313418e2)
COMFORT SUITES
10415 CENTRUM PARKWAY
ljk9LMGlc8ItupjrSKBoRg
["Hotels \u0026 Travel","Event Planning \u0026...
2
10
4/17/2012
4.0
...
1
2
0
0
0
0
0
0
0
none
12
12
ObjectId(581151a3b6729e7e313418e2)
COMFORT SUITES
10415 CENTRUM PARKWAY
ljk9LMGlc8ItupjrSKBoRg
["Hotels \u0026 Travel","Event Planning \u0026...
2
10
12/27/2012
4.0
...
1
2
0
0
0
0
0
0
0
none
13
13
ObjectId(581151a3b6729e7e313418f6)
WALDHORN RESTAURANT
12101 LANCASTER HIGHWAY
2_0P2AmSSFtPgddio0MgYA
["German","Restaurants"]
2
175
3/16/2012
5.0
...
1
2
0
0
0
0
0
0
0
none
14
14
ObjectId(581151a3b6729e7e313418f6)
WALDHORN RESTAURANT
12101 LANCASTER HIGHWAY
2_0P2AmSSFtPgddio0MgYA
["German","Restaurants"]
2
175
6/21/2012
5.0
...
1
2
0
0
0
0
0
0
0
none
15
15
ObjectId(581151a3b6729e7e313418f6)
WALDHORN RESTAURANT
12101 LANCASTER HIGHWAY
2_0P2AmSSFtPgddio0MgYA
["German","Restaurants"]
2
175
11/2/2012
5.0
...
1
2
0
0
0
0
0
0
0
none
16
16
ObjectId(581151a3b6729e7e313418f6)
WALDHORN RESTAURANT
12101 LANCASTER HIGHWAY
2_0P2AmSSFtPgddio0MgYA
["German","Restaurants"]
2
175
3/20/2013
5.0
...
1
2
0
0
0
0
0
0
0
none
17
17
ObjectId(581151a3b6729e7e313418f6)
WALDHORN RESTAURANT
12101 LANCASTER HIGHWAY
2_0P2AmSSFtPgddio0MgYA
["German","Restaurants"]
2
175
8/8/2013
5.0
...
1
2
0
0
0
0
0
0
0
none
18
18
ObjectId(581151a3b6729e7e313418f6)
WALDHORN RESTAURANT
12101 LANCASTER HIGHWAY
2_0P2AmSSFtPgddio0MgYA
["German","Restaurants"]
2
175
4/2/2014
5.0
...
1
2
0
0
0
0
0
0
0
none
19
19
ObjectId(581151a3b6729e7e313418f6)
WALDHORN RESTAURANT
12101 LANCASTER HIGHWAY
2_0P2AmSSFtPgddio0MgYA
["German","Restaurants"]
2
175
9/19/2014
5.0
...
1
2
0
0
0
0
0
0
0
none
20
20
ObjectId(581151a3b6729e7e313418f6)
WALDHORN RESTAURANT
12101 LANCASTER HIGHWAY
2_0P2AmSSFtPgddio0MgYA
["German","Restaurants"]
2
175
3/12/2015
5.0
...
1
2
0
0
0
0
0
0
0
none
21
21
ObjectId(581151a3b6729e7e313418f6)
WALDHORN RESTAURANT
12101 LANCASTER HIGHWAY
2_0P2AmSSFtPgddio0MgYA
["German","Restaurants"]
2
175
7/29/2015
5.0
...
1
2
0
0
0
0
0
0
0
none
22
22
ObjectId(581151a3b6729e7e313418f6)
WALDHORN RESTAURANT
12101 LANCASTER HIGHWAY
2_0P2AmSSFtPgddio0MgYA
["German","Restaurants"]
2
175
12/11/2015
5.0
...
1
2
0
0
0
0
0
0
0
none
23
23
ObjectId(581151a3b6729e7e313418f6)
WALDHORN RESTAURANT
12101 LANCASTER HIGHWAY
2_0P2AmSSFtPgddio0MgYA
["German","Restaurants"]
2
175
3/30/2016
5.0
...
1
2
0
0
0
0
0
0
0
none
24
24
ObjectId(581151a3b6729e7e313418f6)
WALDHORN RESTAURANT
12101 LANCASTER HIGHWAY
2_0P2AmSSFtPgddio0MgYA
["German","Restaurants"]
2
175
6/30/2016
5.0
...
1
2
0
0
0
0
0
0
0
none
25
25
ObjectId(581151a3b6729e7e313418f6)
WALDHORN RESTAURANT
12101 LANCASTER HIGHWAY
2_0P2AmSSFtPgddio0MgYA
["German","Restaurants"]
2
175
9/28/2016
5.0
...
1
2
0
0
0
0
0
0
0
none
26
26
ObjectId(581151a3b6729e7e3134191d)
CHINA BUFFET
9931 LEE ST
5p3Tqyp19UowO0-dAFvxMw
["Buffets","Chinese","Restaurants"]
2
38
3/29/2012
3.0
...
1
2
0
0
0
0
0
0
0
none
27
27
ObjectId(581151a3b6729e7e3134191d)
CHINA BUFFET
9931 LEE ST
5p3Tqyp19UowO0-dAFvxMw
["Buffets","Chinese","Restaurants"]
2
38
6/27/2012
3.0
...
1
2
0
0
0
0
0
0
0
none
28
28
ObjectId(581151a3b6729e7e3134191d)
CHINA BUFFET
9931 LEE ST
5p3Tqyp19UowO0-dAFvxMw
["Buffets","Chinese","Restaurants"]
2
38
10/26/2012
3.0
...
1
2
0
0
0
0
0
0
0
none
29
29
ObjectId(581151a3b6729e7e3134191d)
CHINA BUFFET
9931 LEE ST
5p3Tqyp19UowO0-dAFvxMw
["Buffets","Chinese","Restaurants"]
2
38
3/28/2013
3.0
...
1
2
0
0
0
0
0
0
0
none
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
970
970
ObjectId(581151a4b6729e7e31343725)
See's Candies
1300 W Sunset Rd Henderson 89014-6620
7ei7R9Cen4x4S_fs2lxf7w
["Shopping","Food","Candy Stores","Chocolatier...
3
13
6/30/2011
5.0
...
1
2
0
0
0
0
0
0
0
none
971
971
ObjectId(581151a4b6729e7e31343725)
See's Candies
1300 W Sunset Rd Henderson 89014-6620
7ei7R9Cen4x4S_fs2lxf7w
["Shopping","Food","Candy Stores","Chocolatier...
3
13
5/3/2012
5.0
...
1
2
0
0
0
0
0
0
0
none
972
972
ObjectId(581151a4b6729e7e31343725)
See's Candies
1300 W Sunset Rd Henderson 89014-6620
7ei7R9Cen4x4S_fs2lxf7w
["Shopping","Food","Candy Stores","Chocolatier...
3
13
5/3/2012
5.0
...
1
2
0
0
0
0
0
0
0
none
973
973
ObjectId(581151a4b6729e7e31343725)
See's Candies
1300 W Sunset Rd Henderson 89014-6620
7ei7R9Cen4x4S_fs2lxf7w
["Shopping","Food","Candy Stores","Chocolatier...
3
13
5/14/2013
5.0
...
1
2
0
0
0
0
0
0
0
none
974
974
ObjectId(581151a4b6729e7e31343725)
See's Candies
1300 W Sunset Rd Henderson 89014-6620
7ei7R9Cen4x4S_fs2lxf7w
["Shopping","Food","Candy Stores","Chocolatier...
3
13
5/14/2013
5.0
...
1
2
0
0
0
0
0
0
0
none
975
975
ObjectId(581151a4b6729e7e31343725)
See's Candies
1300 W Sunset Rd Henderson 89014-6620
7ei7R9Cen4x4S_fs2lxf7w
["Shopping","Food","Candy Stores","Chocolatier...
3
13
4/7/2014
5.0
...
1
2
0
0
0
0
0
0
0
none
976
976
ObjectId(581151a4b6729e7e31343725)
See's Candies
1300 W Sunset Rd Henderson 89014-6620
7ei7R9Cen4x4S_fs2lxf7w
["Shopping","Food","Candy Stores","Chocolatier...
3
13
4/7/2014
5.0
...
1
2
0
0
0
0
0
0
0
none
977
977
ObjectId(581151a4b6729e7e31343725)
See's Candies
1300 W Sunset Rd Henderson 89014-6620
7ei7R9Cen4x4S_fs2lxf7w
["Shopping","Food","Candy Stores","Chocolatier...
3
13
1/2/2015
5.0
...
1
2
0
0
0
0
0
0
0
none
978
978
ObjectId(581151a4b6729e7e31343725)
See's Candies
1300 W Sunset Rd Henderson 89014-6620
7ei7R9Cen4x4S_fs2lxf7w
["Shopping","Food","Candy Stores","Chocolatier...
3
13
1/2/2015
5.0
...
1
2
0
0
0
0
0
0
0
none
979
979
ObjectId(581151a4b6729e7e31343725)
See's Candies
1300 W Sunset Rd Henderson 89014-6620
7ei7R9Cen4x4S_fs2lxf7w
["Shopping","Food","Candy Stores","Chocolatier...
3
13
2/10/2016
5.0
...
1
2
0
0
0
0
0
0
0
none
980
980
ObjectId(581151a4b6729e7e31343725)
See's Candies
1300 W Sunset Rd Henderson 89014-6620
7ei7R9Cen4x4S_fs2lxf7w
["Shopping","Food","Candy Stores","Chocolatier...
3
13
2/10/2016
5.0
...
1
2
0
0
0
0
0
0
0
none
981
981
ObjectId(581151a4b6729e7e31343744)
Coyote's Cafe & Cantina
4350 E Sunset Rd Henderson 89014-2258
Nf2Vj8R6So6_jeX-YhAdJA
["Mexican","Restaurants"]
3
121
3/16/2010
4.0
...
1
2
0
0
0
0
0
0
0
none
982
982
ObjectId(581151a4b6729e7e31343744)
Coyote's Cafe & Cantina
4350 E Sunset Rd Henderson 89014-2258
Nf2Vj8R6So6_jeX-YhAdJA
["Mexican","Restaurants"]
3
121
3/16/2010
4.0
...
1
2
0
0
0
0
0
0
0
none
983
983
ObjectId(581151a4b6729e7e31343744)
Coyote's Cafe & Cantina
4350 E Sunset Rd Henderson 89014-2258
Nf2Vj8R6So6_jeX-YhAdJA
["Mexican","Restaurants"]
3
121
3/21/2010
4.0
...
1
2
0
0
0
0
0
0
0
none
984
984
ObjectId(581151a4b6729e7e31343744)
Coyote's Cafe & Cantina
4350 E Sunset Rd Henderson 89014-2258
Nf2Vj8R6So6_jeX-YhAdJA
["Mexican","Restaurants"]
3
121
3/21/2010
4.0
...
1
2
0
0
0
0
0
0
0
none
985
985
ObjectId(581151a4b6729e7e31343744)
Coyote's Cafe & Cantina
4350 E Sunset Rd Henderson 89014-2258
Nf2Vj8R6So6_jeX-YhAdJA
["Mexican","Restaurants"]
3
121
5/19/2011
4.0
...
1
2
0
0
0
0
0
0
0
none
986
986
ObjectId(581151a4b6729e7e31343744)
Coyote's Cafe & Cantina
4350 E Sunset Rd Henderson 89014-2258
Nf2Vj8R6So6_jeX-YhAdJA
["Mexican","Restaurants"]
3
121
5/19/2011
4.0
...
1
2
0
0
0
0
0
0
0
none
987
987
ObjectId(581151a4b6729e7e31343744)
Coyote's Cafe & Cantina
4350 E Sunset Rd Henderson 89014-2258
Nf2Vj8R6So6_jeX-YhAdJA
["Mexican","Restaurants"]
3
121
6/20/2012
4.0
...
1
2
0
0
0
0
0
0
0
none
988
988
ObjectId(581151a4b6729e7e31343744)
Coyote's Cafe & Cantina
4350 E Sunset Rd Henderson 89014-2258
Nf2Vj8R6So6_jeX-YhAdJA
["Mexican","Restaurants"]
3
121
6/20/2012
4.0
...
1
2
0
0
0
0
0
0
0
none
989
989
ObjectId(581151a4b6729e7e31343744)
Coyote's Cafe & Cantina
4350 E Sunset Rd Henderson 89014-2258
Nf2Vj8R6So6_jeX-YhAdJA
["Mexican","Restaurants"]
3
121
7/2/2012
4.0
...
1
2
0
0
0
0
0
0
0
none
990
990
ObjectId(581151a4b6729e7e31343744)
Coyote's Cafe & Cantina
4350 E Sunset Rd Henderson 89014-2258
Nf2Vj8R6So6_jeX-YhAdJA
["Mexican","Restaurants"]
3
121
7/2/2012
4.0
...
1
2
0
0
0
0
0
0
0
none
991
991
ObjectId(581151a4b6729e7e31343744)
Coyote's Cafe & Cantina
4350 E Sunset Rd Henderson 89014-2258
Nf2Vj8R6So6_jeX-YhAdJA
["Mexican","Restaurants"]
3
121
8/5/2013
4.0
...
1
2
0
0
0
0
0
0
0
none
992
992
ObjectId(581151a4b6729e7e31343744)
Coyote's Cafe & Cantina
4350 E Sunset Rd Henderson 89014-2258
Nf2Vj8R6So6_jeX-YhAdJA
["Mexican","Restaurants"]
3
121
8/5/2013
4.0
...
1
2
0
0
0
0
0
0
0
none
993
993
ObjectId(581151a4b6729e7e31343744)
Coyote's Cafe & Cantina
4350 E Sunset Rd Henderson 89014-2258
Nf2Vj8R6So6_jeX-YhAdJA
["Mexican","Restaurants"]
3
121
2/7/2014
4.0
...
1
2
0
0
0
0
0
0
0
none
994
994
ObjectId(581151a4b6729e7e31343744)
Coyote's Cafe & Cantina
4350 E Sunset Rd Henderson 89014-2258
Nf2Vj8R6So6_jeX-YhAdJA
["Mexican","Restaurants"]
3
121
2/7/2014
4.0
...
1
2
0
0
0
0
0
0
0
none
995
995
ObjectId(581151a4b6729e7e31343744)
Coyote's Cafe & Cantina
4350 E Sunset Rd Henderson 89014-2258
Nf2Vj8R6So6_jeX-YhAdJA
["Mexican","Restaurants"]
3
121
1/23/2015
4.0
...
1
2
0
0
0
0
0
0
0
none
996
996
ObjectId(581151a4b6729e7e31343744)
Coyote's Cafe & Cantina
4350 E Sunset Rd Henderson 89014-2258
Nf2Vj8R6So6_jeX-YhAdJA
["Mexican","Restaurants"]
3
121
1/23/2015
4.0
...
1
2
0
0
0
0
0
0
0
none
997
997
ObjectId(581151a4b6729e7e31343744)
Coyote's Cafe & Cantina
4350 E Sunset Rd Henderson 89014-2258
Nf2Vj8R6So6_jeX-YhAdJA
["Mexican","Restaurants"]
3
121
5/16/2016
4.0
...
1
2
0
0
0
0
0
0
0
none
998
998
ObjectId(581151a4b6729e7e31343744)
Coyote's Cafe & Cantina
4350 E Sunset Rd Henderson 89014-2258
Nf2Vj8R6So6_jeX-YhAdJA
["Mexican","Restaurants"]
3
121
5/16/2016
4.0
...
1
2
0
0
0
0
0
0
0
none
999
999
ObjectId(581151a4b6729e7e31343744)
Coyote's Cafe & Cantina
4350 E Sunset Rd Henderson 89014-2258
Nf2Vj8R6So6_jeX-YhAdJA
["Mexican","Restaurants"]
3
121
5/31/2016
4.0
...
1
2
0
0
0
0
0
0
0
none
1000 rows × 63 columns
In [85]:
#Create city Dummy Variable - Boston: 1; Charlotte: 2; Las Vegas: 3
df_city = pd.get_dummies(df['city'])
df_new = pd.concat([df, df_city], axis=1)
In [86]:
df = df_new.rename(columns={1: "Boston", 2: "Charlotte", 3:"Las Vegas"})
df.head(10)
Out[86]:
Unnamed: 0
_id
restaurant_name
address_full
business_id
categories
city
review_count
inspection_date
stars
...
tourist
classy
hipster
latenight
upscale
divey
Neighborhoods
Boston
Charlotte
Las Vegas
0
0
ObjectId(581151a3b6729e7e313418da)
TLC WINGS & GRILL
9101 PINEVILLE-MATTHEWS RD
lX3XYcMWoRlHjrmkoGNefQ
["Chicken Wings","Restaurants"]
2
29
1/10/2012
4.0
...
0
0
0
0
0
0
none
0.0
1.0
0.0
1
1
ObjectId(581151a3b6729e7e313418da)
TLC WINGS & GRILL
9101 PINEVILLE-MATTHEWS RD
lX3XYcMWoRlHjrmkoGNefQ
["Chicken Wings","Restaurants"]
2
29
4/20/2012
4.0
...
0
0
0
0
0
0
none
0.0
1.0
0.0
2
2
ObjectId(581151a3b6729e7e313418da)
TLC WINGS & GRILL
9101 PINEVILLE-MATTHEWS RD
lX3XYcMWoRlHjrmkoGNefQ
["Chicken Wings","Restaurants"]
2
29
8/3/2012
4.0
...
0
0
0
0
0
0
none
0.0
1.0
0.0
3
3
ObjectId(581151a3b6729e7e313418da)
TLC WINGS & GRILL
9101 PINEVILLE-MATTHEWS RD
lX3XYcMWoRlHjrmkoGNefQ
["Chicken Wings","Restaurants"]
2
29
1/24/2013
4.0
...
0
0
0
0
0
0
none
0.0
1.0
0.0
4
4
ObjectId(581151a3b6729e7e313418da)
TLC WINGS & GRILL
9101 PINEVILLE-MATTHEWS RD
lX3XYcMWoRlHjrmkoGNefQ
["Chicken Wings","Restaurants"]
2
29
4/22/2013
4.0
...
0
0
0
0
0
0
none
0.0
1.0
0.0
5
5
ObjectId(581151a3b6729e7e313418da)
TLC WINGS & GRILL
9101 PINEVILLE-MATTHEWS RD
lX3XYcMWoRlHjrmkoGNefQ
["Chicken Wings","Restaurants"]
2
29
10/4/2013
4.0
...
0
0
0
0
0
0
none
0.0
1.0
0.0
6
6
ObjectId(581151a3b6729e7e313418da)
TLC WINGS & GRILL
9101 PINEVILLE-MATTHEWS RD
lX3XYcMWoRlHjrmkoGNefQ
["Chicken Wings","Restaurants"]
2
29
4/3/2014
4.0
...
0
0
0
0
0
0
none
0.0
1.0
0.0
7
7
ObjectId(581151a3b6729e7e313418da)
TLC WINGS & GRILL
9101 PINEVILLE-MATTHEWS RD
lX3XYcMWoRlHjrmkoGNefQ
["Chicken Wings","Restaurants"]
2
29
1/9/2015
4.0
...
0
0
0
0
0
0
none
0.0
1.0
0.0
8
8
ObjectId(581151a3b6729e7e313418da)
TLC WINGS & GRILL
9101 PINEVILLE-MATTHEWS RD
lX3XYcMWoRlHjrmkoGNefQ
["Chicken Wings","Restaurants"]
2
29
7/1/2015
4.0
...
0
0
0
0
0
0
none
0.0
1.0
0.0
9
9
ObjectId(581151a3b6729e7e313418da)
TLC WINGS & GRILL
9101 PINEVILLE-MATTHEWS RD
lX3XYcMWoRlHjrmkoGNefQ
["Chicken Wings","Restaurants"]
2
29
2/3/2016
4.0
...
0
0
0
0
0
0
none
0.0
1.0
0.0
10 rows × 66 columns
In [87]:
import pandas as pd
from sklearn import preprocessing
le = preprocessing.LabelEncoder()
label_neighbor = pd.DataFrame(le.fit_transform(df.Neighborhoods))
neighborhood = pd.concat([df.Neighborhoods, label_neighbor], axis=1)
def bin_convert(x):
binary = '{0:07b}'.format(x)
return binary
neighborhood['binary'] = neighborhood[0].apply(bin_convert)
neighborhood_bin = neighborhood['binary'].apply(lambda x: pd.Series(list(x)))
neighborhood_bin.columns = ['neighborhood'+str(x) for x in neighborhood_bin.columns]
df_new = pd.concat([df, neighborhood_bin], axis=1)
In [88]:
df_new.head(100)
Out[88]:
Unnamed: 0
_id
restaurant_name
address_full
business_id
categories
city
review_count
inspection_date
stars
...
Boston
Charlotte
Las Vegas
neighborhood0
neighborhood1
neighborhood2
neighborhood3
neighborhood4
neighborhood5
neighborhood6
0
0
ObjectId(581151a3b6729e7e313418da)
TLC WINGS & GRILL
9101 PINEVILLE-MATTHEWS RD
lX3XYcMWoRlHjrmkoGNefQ
["Chicken Wings","Restaurants"]
2
29
1/10/2012
4.0
...
0.0
1.0
0.0
0
1
1
1
1
0
0
1
1
ObjectId(581151a3b6729e7e313418da)
TLC WINGS & GRILL
9101 PINEVILLE-MATTHEWS RD
lX3XYcMWoRlHjrmkoGNefQ
["Chicken Wings","Restaurants"]
2
29
4/20/2012
4.0
...
0.0
1.0
0.0
0
1
1
1
1
0
0
2
2
ObjectId(581151a3b6729e7e313418da)
TLC WINGS & GRILL
9101 PINEVILLE-MATTHEWS RD
lX3XYcMWoRlHjrmkoGNefQ
["Chicken Wings","Restaurants"]
2
29
8/3/2012
4.0
...
0.0
1.0
0.0
0
1
1
1
1
0
0
3
3
ObjectId(581151a3b6729e7e313418da)
TLC WINGS & GRILL
9101 PINEVILLE-MATTHEWS RD
lX3XYcMWoRlHjrmkoGNefQ
["Chicken Wings","Restaurants"]
2
29
1/24/2013
4.0
...
0.0
1.0
0.0
0
1
1
1
1
0
0
4
4
ObjectId(581151a3b6729e7e313418da)
TLC WINGS & GRILL
9101 PINEVILLE-MATTHEWS RD
lX3XYcMWoRlHjrmkoGNefQ
["Chicken Wings","Restaurants"]
2
29
4/22/2013
4.0
...
0.0
1.0
0.0
0
1
1
1
1
0
0
5
5
ObjectId(581151a3b6729e7e313418da)
TLC WINGS & GRILL
9101 PINEVILLE-MATTHEWS RD
lX3XYcMWoRlHjrmkoGNefQ
["Chicken Wings","Restaurants"]
2
29
10/4/2013
4.0
...
0.0
1.0
0.0
0
1
1
1
1
0
0
6
6
ObjectId(581151a3b6729e7e313418da)
TLC WINGS & GRILL
9101 PINEVILLE-MATTHEWS RD
lX3XYcMWoRlHjrmkoGNefQ
["Chicken Wings","Restaurants"]
2
29
4/3/2014
4.0
...
0.0
1.0
0.0
0
1
1
1
1
0
0
7
7
ObjectId(581151a3b6729e7e313418da)
TLC WINGS & GRILL
9101 PINEVILLE-MATTHEWS RD
lX3XYcMWoRlHjrmkoGNefQ
["Chicken Wings","Restaurants"]
2
29
1/9/2015
4.0
...
0.0
1.0
0.0
0
1
1
1
1
0
0
8
8
ObjectId(581151a3b6729e7e313418da)
TLC WINGS & GRILL
9101 PINEVILLE-MATTHEWS RD
lX3XYcMWoRlHjrmkoGNefQ
["Chicken Wings","Restaurants"]
2
29
7/1/2015
4.0
...
0.0
1.0
0.0
0
1
1
1
1
0
0
9
9
ObjectId(581151a3b6729e7e313418da)
TLC WINGS & GRILL
9101 PINEVILLE-MATTHEWS RD
lX3XYcMWoRlHjrmkoGNefQ
["Chicken Wings","Restaurants"]
2
29
2/3/2016
4.0
...
0.0
1.0
0.0
0
1
1
1
1
0
0
10
10
ObjectId(581151a3b6729e7e313418da)
TLC WINGS & GRILL
9101 PINEVILLE-MATTHEWS RD
lX3XYcMWoRlHjrmkoGNefQ
["Chicken Wings","Restaurants"]
2
29
8/15/2016
4.0
...
0.0
1.0
0.0
0
1
1
1
1
0
0
11
11
ObjectId(581151a3b6729e7e313418e2)
COMFORT SUITES
10415 CENTRUM PARKWAY
ljk9LMGlc8ItupjrSKBoRg
["Hotels \u0026 Travel","Event Planning \u0026...
2
10
4/17/2012
4.0
...
0.0
1.0
0.0
0
1
1
1
1
0
0
12
12
ObjectId(581151a3b6729e7e313418e2)
COMFORT SUITES
10415 CENTRUM PARKWAY
ljk9LMGlc8ItupjrSKBoRg
["Hotels \u0026 Travel","Event Planning \u0026...
2
10
12/27/2012
4.0
...
0.0
1.0
0.0
0
1
1
1
1
0
0
13
13
ObjectId(581151a3b6729e7e313418f6)
WALDHORN RESTAURANT
12101 LANCASTER HIGHWAY
2_0P2AmSSFtPgddio0MgYA
["German","Restaurants"]
2
175
3/16/2012
5.0
...
0.0
1.0
0.0
0
1
1
1
1
0
0
14
14
ObjectId(581151a3b6729e7e313418f6)
WALDHORN RESTAURANT
12101 LANCASTER HIGHWAY
2_0P2AmSSFtPgddio0MgYA
["German","Restaurants"]
2
175
6/21/2012
5.0
...
0.0
1.0
0.0
0
1
1
1
1
0
0
15
15
ObjectId(581151a3b6729e7e313418f6)
WALDHORN RESTAURANT
12101 LANCASTER HIGHWAY
2_0P2AmSSFtPgddio0MgYA
["German","Restaurants"]
2
175
11/2/2012
5.0
...
0.0
1.0
0.0
0
1
1
1
1
0
0
16
16
ObjectId(581151a3b6729e7e313418f6)
WALDHORN RESTAURANT
12101 LANCASTER HIGHWAY
2_0P2AmSSFtPgddio0MgYA
["German","Restaurants"]
2
175
3/20/2013
5.0
...
0.0
1.0
0.0
0
1
1
1
1
0
0
17
17
ObjectId(581151a3b6729e7e313418f6)
WALDHORN RESTAURANT
12101 LANCASTER HIGHWAY
2_0P2AmSSFtPgddio0MgYA
["German","Restaurants"]
2
175
8/8/2013
5.0
...
0.0
1.0
0.0
0
1
1
1
1
0
0
18
18
ObjectId(581151a3b6729e7e313418f6)
WALDHORN RESTAURANT
12101 LANCASTER HIGHWAY
2_0P2AmSSFtPgddio0MgYA
["German","Restaurants"]
2
175
4/2/2014
5.0
...
0.0
1.0
0.0
0
1
1
1
1
0
0
19
19
ObjectId(581151a3b6729e7e313418f6)
WALDHORN RESTAURANT
12101 LANCASTER HIGHWAY
2_0P2AmSSFtPgddio0MgYA
["German","Restaurants"]
2
175
9/19/2014
5.0
...
0.0
1.0
0.0
0
1
1
1
1
0
0
20
20
ObjectId(581151a3b6729e7e313418f6)
WALDHORN RESTAURANT
12101 LANCASTER HIGHWAY
2_0P2AmSSFtPgddio0MgYA
["German","Restaurants"]
2
175
3/12/2015
5.0
...
0.0
1.0
0.0
0
1
1
1
1
0
0
21
21
ObjectId(581151a3b6729e7e313418f6)
WALDHORN RESTAURANT
12101 LANCASTER HIGHWAY
2_0P2AmSSFtPgddio0MgYA
["German","Restaurants"]
2
175
7/29/2015
5.0
...
0.0
1.0
0.0
0
1
1
1
1
0
0
22
22
ObjectId(581151a3b6729e7e313418f6)
WALDHORN RESTAURANT
12101 LANCASTER HIGHWAY
2_0P2AmSSFtPgddio0MgYA
["German","Restaurants"]
2
175
12/11/2015
5.0
...
0.0
1.0
0.0
0
1
1
1
1
0
0
23
23
ObjectId(581151a3b6729e7e313418f6)
WALDHORN RESTAURANT
12101 LANCASTER HIGHWAY
2_0P2AmSSFtPgddio0MgYA
["German","Restaurants"]
2
175
3/30/2016
5.0
...
0.0
1.0
0.0
0
1
1
1
1
0
0
24
24
ObjectId(581151a3b6729e7e313418f6)
WALDHORN RESTAURANT
12101 LANCASTER HIGHWAY
2_0P2AmSSFtPgddio0MgYA
["German","Restaurants"]
2
175
6/30/2016
5.0
...
0.0
1.0
0.0
0
1
1
1
1
0
0
25
25
ObjectId(581151a3b6729e7e313418f6)
WALDHORN RESTAURANT
12101 LANCASTER HIGHWAY
2_0P2AmSSFtPgddio0MgYA
["German","Restaurants"]
2
175
9/28/2016
5.0
...
0.0
1.0
0.0
0
1
1
1
1
0
0
26
26
ObjectId(581151a3b6729e7e3134191d)
CHINA BUFFET
9931 LEE ST
5p3Tqyp19UowO0-dAFvxMw
["Buffets","Chinese","Restaurants"]
2
38
3/29/2012
3.0
...
0.0
1.0
0.0
0
1
1
1
1
0
0
27
27
ObjectId(581151a3b6729e7e3134191d)
CHINA BUFFET
9931 LEE ST
5p3Tqyp19UowO0-dAFvxMw
["Buffets","Chinese","Restaurants"]
2
38
6/27/2012
3.0
...
0.0
1.0
0.0
0
1
1
1
1
0
0
28
28
ObjectId(581151a3b6729e7e3134191d)
CHINA BUFFET
9931 LEE ST
5p3Tqyp19UowO0-dAFvxMw
["Buffets","Chinese","Restaurants"]
2
38
10/26/2012
3.0
...
0.0
1.0
0.0
0
1
1
1
1
0
0
29
29
ObjectId(581151a3b6729e7e3134191d)
CHINA BUFFET
9931 LEE ST
5p3Tqyp19UowO0-dAFvxMw
["Buffets","Chinese","Restaurants"]
2
38
3/28/2013
3.0
...
0.0
1.0
0.0
0
1
1
1
1
0
0
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
70
70
ObjectId(581151a3b6729e7e31341939)
SOHO BISTRO
214 N TRYON ST
rT-iPtIXMKj3dTcl87lbOw
["Chinese","Restaurants"]
2
114
5/30/2014
4.0
...
0.0
1.0
0.0
0
0
1
0
1
1
1
71
71
ObjectId(581151a3b6729e7e31341939)
SOHO BISTRO
214 N TRYON ST
rT-iPtIXMKj3dTcl87lbOw
["Chinese","Restaurants"]
2
114
10/30/2014
4.0
...
0.0
1.0
0.0
0
0
1
0
1
1
1
72
72
ObjectId(581151a3b6729e7e31341939)
SOHO BISTRO
214 N TRYON ST
rT-iPtIXMKj3dTcl87lbOw
["Chinese","Restaurants"]
2
114
2/23/2015
4.0
...
0.0
1.0
0.0
0
0
1
0
1
1
1
73
73
ObjectId(581151a3b6729e7e31341939)
SOHO BISTRO
214 N TRYON ST
rT-iPtIXMKj3dTcl87lbOw
["Chinese","Restaurants"]
2
114
6/30/2015
4.0
...
0.0
1.0
0.0
0
0
1
0
1
1
1
74
74
ObjectId(581151a3b6729e7e31341939)
SOHO BISTRO
214 N TRYON ST
rT-iPtIXMKj3dTcl87lbOw
["Chinese","Restaurants"]
2
114
9/22/2015
4.0
...
0.0
1.0
0.0
0
0
1
0
1
1
1
75
75
ObjectId(581151a3b6729e7e31341939)
SOHO BISTRO
214 N TRYON ST
rT-iPtIXMKj3dTcl87lbOw
["Chinese","Restaurants"]
2
114
12/2/2015
4.0
...
0.0
1.0
0.0
0
0
1
0
1
1
1
76
76
ObjectId(581151a3b6729e7e31341939)
SOHO BISTRO
214 N TRYON ST
rT-iPtIXMKj3dTcl87lbOw
["Chinese","Restaurants"]
2
114
3/11/2016
4.0
...
0.0
1.0
0.0
0
0
1
0
1
1
1
77
77
ObjectId(581151a3b6729e7e31341939)
SOHO BISTRO
214 N TRYON ST
rT-iPtIXMKj3dTcl87lbOw
["Chinese","Restaurants"]
2
114
5/25/2016
4.0
...
0.0
1.0
0.0
0
0
1
0
1
1
1
78
78
ObjectId(581151a3b6729e7e31341939)
SOHO BISTRO
214 N TRYON ST
rT-iPtIXMKj3dTcl87lbOw
["Chinese","Restaurants"]
2
114
9/28/2016
4.0
...
0.0
1.0
0.0
0
0
1
0
1
1
1
79
79
ObjectId(581151a3b6729e7e31341947)
SIMMONS RESTAURANT
516 N GRAHAM ST
XzhsJecsCYj-Wc32zOWqmg
["Southern","Restaurants"]
2
15
6/4/2012
4.0
...
0.0
1.0
0.0
0
0
1
1
0
0
0
80
80
ObjectId(581151a3b6729e7e31341947)
SIMMONS RESTAURANT
516 N GRAHAM ST
XzhsJecsCYj-Wc32zOWqmg
["Southern","Restaurants"]
2
15
10/31/2012
4.0
...
0.0
1.0
0.0
0
0
1
1
0
0
0
81
81
ObjectId(581151a3b6729e7e31341947)
SIMMONS RESTAURANT
516 N GRAHAM ST
XzhsJecsCYj-Wc32zOWqmg
["Southern","Restaurants"]
2
15
2/28/2013
4.0
...
0.0
1.0
0.0
0
0
1
1
0
0
0
82
82
ObjectId(581151a3b6729e7e31341947)
SIMMONS RESTAURANT
516 N GRAHAM ST
XzhsJecsCYj-Wc32zOWqmg
["Southern","Restaurants"]
2
15
3/3/2014
4.0
...
0.0
1.0
0.0
0
0
1
1
0
0
0
83
83
ObjectId(581151a3b6729e7e31341948)
FUJIYAMA
320 S TRYON ST
QMX1ssofSveU3qhVAKLnXA
["Korean","Seafood","Japanese","Restaurants"]
2
14
2/28/2012
4.0
...
0.0
1.0
0.0
0
1
1
0
1
1
1
84
84
ObjectId(581151a3b6729e7e31341948)
FUJIYAMA
320 S TRYON ST
QMX1ssofSveU3qhVAKLnXA
["Korean","Seafood","Japanese","Restaurants"]
2
14
7/20/2012
4.0
...
0.0
1.0
0.0
0
1
1
0
1
1
1
85
85
ObjectId(581151a3b6729e7e31341948)
FUJIYAMA
320 S TRYON ST
QMX1ssofSveU3qhVAKLnXA
["Korean","Seafood","Japanese","Restaurants"]
2
14
1/31/2013
4.0
...
0.0
1.0
0.0
0
1
1
0
1
1
1
86
86
ObjectId(581151a3b6729e7e31341948)
FUJIYAMA
320 S TRYON ST
QMX1ssofSveU3qhVAKLnXA
["Korean","Seafood","Japanese","Restaurants"]
2
14
3/25/2013
4.0
...
0.0
1.0
0.0
0
1
1
0
1
1
1
87
87
ObjectId(581151a3b6729e7e31341948)
FUJIYAMA
320 S TRYON ST
QMX1ssofSveU3qhVAKLnXA
["Korean","Seafood","Japanese","Restaurants"]
2
14
3/20/2014
4.0
...
0.0
1.0
0.0
0
1
1
0
1
1
1
88
88
ObjectId(581151a3b6729e7e31341948)
FUJIYAMA
320 S TRYON ST
QMX1ssofSveU3qhVAKLnXA
["Korean","Seafood","Japanese","Restaurants"]
2
14
8/15/2014
4.0
...
0.0
1.0
0.0
0
1
1
0
1
1
1
89
89
ObjectId(581151a3b6729e7e31341948)
FUJIYAMA
320 S TRYON ST
QMX1ssofSveU3qhVAKLnXA
["Korean","Seafood","Japanese","Restaurants"]
2
14
12/22/2014
4.0
...
0.0
1.0
0.0
0
1
1
0
1
1
1
90
90
ObjectId(581151a3b6729e7e31341948)
FUJIYAMA
320 S TRYON ST
QMX1ssofSveU3qhVAKLnXA
["Korean","Seafood","Japanese","Restaurants"]
2
14
4/17/2015
4.0
...
0.0
1.0
0.0
0
1
1
0
1
1
1
91
91
ObjectId(581151a3b6729e7e31341948)
FUJIYAMA
320 S TRYON ST
QMX1ssofSveU3qhVAKLnXA
["Korean","Seafood","Japanese","Restaurants"]
2
14
9/21/2015
4.0
...
0.0
1.0
0.0
0
1
1
0
1
1
1
92
92
ObjectId(581151a3b6729e7e31341948)
FUJIYAMA
320 S TRYON ST
QMX1ssofSveU3qhVAKLnXA
["Korean","Seafood","Japanese","Restaurants"]
2
14
1/26/2016
4.0
...
0.0
1.0
0.0
0
1
1
0
1
1
1
93
93
ObjectId(581151a3b6729e7e31341948)
FUJIYAMA
320 S TRYON ST
QMX1ssofSveU3qhVAKLnXA
["Korean","Seafood","Japanese","Restaurants"]
2
14
4/11/2016
4.0
...
0.0
1.0
0.0
0
1
1
0
1
1
1
94
94
ObjectId(581151a3b6729e7e31341948)
FUJIYAMA
320 S TRYON ST
QMX1ssofSveU3qhVAKLnXA
["Korean","Seafood","Japanese","Restaurants"]
2
14
8/19/2016
4.0
...
0.0
1.0
0.0
0
1
1
0
1
1
1
95
95
ObjectId(581151a3b6729e7e3134194a)
CHINA KING
128 BREVARD CT
utyqO_IVBAN8ULZmi52XaA
["Chinese","Restaurants"]
2
6
3/27/2012
3.0
...
0.0
1.0
0.0
0
1
1
0
1
1
1
96
96
ObjectId(581151a3b6729e7e3134194a)
CHINA KING
128 BREVARD CT
utyqO_IVBAN8ULZmi52XaA
["Chinese","Restaurants"]
2
6
5/23/2012
3.0
...
0.0
1.0
0.0
0
1
1
0
1
1
1
97
97
ObjectId(581151a3b6729e7e3134194a)
CHINA KING
128 BREVARD CT
utyqO_IVBAN8ULZmi52XaA
["Chinese","Restaurants"]
2
6
8/9/2012
3.0
...
0.0
1.0
0.0
0
1
1
0
1
1
1
98
98
ObjectId(581151a3b6729e7e3134194a)
CHINA KING
128 BREVARD CT
utyqO_IVBAN8ULZmi52XaA
["Chinese","Restaurants"]
2
6
3/7/2013
3.0
...
0.0
1.0
0.0
0
1
1
0
1
1
1
99
99
ObjectId(581151a3b6729e7e3134194a)
CHINA KING
128 BREVARD CT
utyqO_IVBAN8ULZmi52XaA
["Chinese","Restaurants"]
2
6
5/20/2013
3.0
...
0.0
1.0
0.0
0
1
1
0
1
1
1
100 rows × 73 columns
In [89]:
#Create Cross-Referenced DF for Neighborhood Lookup
CRdf = df_new.copy()
CRdf = CRdf[['business_id', 'Neighborhoods', 'neighborhood0', 'neighborhood1', 'neighborhood2', 'neighborhood3', 'neighborhood4', 'neighborhood5', 'neighborhood6']]
CRdf.head(10)
Out[89]:
business_id
Neighborhoods
neighborhood0
neighborhood1
neighborhood2
neighborhood3
neighborhood4
neighborhood5
neighborhood6
0
lX3XYcMWoRlHjrmkoGNefQ
none
0
1
1
1
1
0
0
1
lX3XYcMWoRlHjrmkoGNefQ
none
0
1
1
1
1
0
0
2
lX3XYcMWoRlHjrmkoGNefQ
none
0
1
1
1
1
0
0
3
lX3XYcMWoRlHjrmkoGNefQ
none
0
1
1
1
1
0
0
4
lX3XYcMWoRlHjrmkoGNefQ
none
0
1
1
1
1
0
0
5
lX3XYcMWoRlHjrmkoGNefQ
none
0
1
1
1
1
0
0
6
lX3XYcMWoRlHjrmkoGNefQ
none
0
1
1
1
1
0
0
7
lX3XYcMWoRlHjrmkoGNefQ
none
0
1
1
1
1
0
0
8
lX3XYcMWoRlHjrmkoGNefQ
none
0
1
1
1
1
0
0
9
lX3XYcMWoRlHjrmkoGNefQ
none
0
1
1
1
1
0
0
In [90]:
#Drop string columns already encoded
del df_new['neighborhoods']
del df_new['attributes']
del df_new['categories']
del df_new['open']
del df_new['city']
In [91]:
df_new.head(10)
Out[91]:
Unnamed: 0
_id
restaurant_name
address_full
business_id
review_count
inspection_date
stars
latitude
longitude
...
Boston
Charlotte
Las Vegas
neighborhood0
neighborhood1
neighborhood2
neighborhood3
neighborhood4
neighborhood5
neighborhood6
0
0
ObjectId(581151a3b6729e7e313418da)
TLC WINGS & GRILL
9101 PINEVILLE-MATTHEWS RD
lX3XYcMWoRlHjrmkoGNefQ
29
1/10/2012
4.0
35.0
-81.0
...
0.0
1.0
0.0
0
1
1
1
1
0
0
1
1
ObjectId(581151a3b6729e7e313418da)
TLC WINGS & GRILL
9101 PINEVILLE-MATTHEWS RD
lX3XYcMWoRlHjrmkoGNefQ
29
4/20/2012
4.0
35.0
-81.0
...
0.0
1.0
0.0
0
1
1
1
1
0
0
2
2
ObjectId(581151a3b6729e7e313418da)
TLC WINGS & GRILL
9101 PINEVILLE-MATTHEWS RD
lX3XYcMWoRlHjrmkoGNefQ
29
8/3/2012
4.0
35.0
-81.0
...
0.0
1.0
0.0
0
1
1
1
1
0
0
3
3
ObjectId(581151a3b6729e7e313418da)
TLC WINGS & GRILL
9101 PINEVILLE-MATTHEWS RD
lX3XYcMWoRlHjrmkoGNefQ
29
1/24/2013
4.0
35.0
-81.0
...
0.0
1.0
0.0
0
1
1
1
1
0
0
4
4
ObjectId(581151a3b6729e7e313418da)
TLC WINGS & GRILL
9101 PINEVILLE-MATTHEWS RD
lX3XYcMWoRlHjrmkoGNefQ
29
4/22/2013
4.0
35.0
-81.0
...
0.0
1.0
0.0
0
1
1
1
1
0
0
5
5
ObjectId(581151a3b6729e7e313418da)
TLC WINGS & GRILL
9101 PINEVILLE-MATTHEWS RD
lX3XYcMWoRlHjrmkoGNefQ
29
10/4/2013
4.0
35.0
-81.0
...
0.0
1.0
0.0
0
1
1
1
1
0
0
6
6
ObjectId(581151a3b6729e7e313418da)
TLC WINGS & GRILL
9101 PINEVILLE-MATTHEWS RD
lX3XYcMWoRlHjrmkoGNefQ
29
4/3/2014
4.0
35.0
-81.0
...
0.0
1.0
0.0
0
1
1
1
1
0
0
7
7
ObjectId(581151a3b6729e7e313418da)
TLC WINGS & GRILL
9101 PINEVILLE-MATTHEWS RD
lX3XYcMWoRlHjrmkoGNefQ
29
1/9/2015
4.0
35.0
-81.0
...
0.0
1.0
0.0
0
1
1
1
1
0
0
8
8
ObjectId(581151a3b6729e7e313418da)
TLC WINGS & GRILL
9101 PINEVILLE-MATTHEWS RD
lX3XYcMWoRlHjrmkoGNefQ
29
7/1/2015
4.0
35.0
-81.0
...
0.0
1.0
0.0
0
1
1
1
1
0
0
9
9
ObjectId(581151a3b6729e7e313418da)
TLC WINGS & GRILL
9101 PINEVILLE-MATTHEWS RD
lX3XYcMWoRlHjrmkoGNefQ
29
2/3/2016
4.0
35.0
-81.0
...
0.0
1.0
0.0
0
1
1
1
1
0
0
10 rows × 68 columns
In [93]:
df_new.to_csv('the_final_countdown2.csv')
CRdf.to_csv('CRdata.csv')
In [ ]:
Content source: georgetown-analytics/restaurant-health
Similar notebooks: