Pipeline(memory=None,
steps=[('std',
StandardScaler(copy=True, with_mean=True, with_std=True)),
('reg',
LinearRegression(copy_X=True, fit_intercept=False, n_jobs=None,
normalize=False))],
verbose=False) -3.9782920837521
Pipeline(memory=None,
steps=[('std',
StandardScaler(copy=True, with_mean=True, with_std=True)),
('reg',
RandomForestRegressor(bootstrap=True, ccp_alpha=0.0,
criterion='mse', max_depth=None,
max_features='auto', max_leaf_nodes=None,
max_samples=None,
min_impurity_decrease=0.0,
min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0,
n_estimators=50, n_jobs=None,
oob_score=False, random_state=None,
verbose=0, warm_start=False))],
verbose=False) 0.9237558496080784
/Users/benjamin/.pyenv/versions/3.7.3/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklearn/neural_network/_multilayer_perceptron.py:571: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (200) reached and the optimization hasn't converged yet.
% self.max_iter, ConvergenceWarning)
Pipeline(memory=None,
steps=[('std',
StandardScaler(copy=True, with_mean=True, with_std=True)),
('reg',
MLPRegressor(activation='relu', alpha=0.0001,
batch_size='auto', beta_1=0.9, beta_2=0.999,
early_stopping=False, epsilon=1e-08,
hidden_layer_sizes=(100, 100, 100),
learning_rate='constant',
learning_rate_init=0.001, max_fun=15000,
max_iter=200, momentum=0.9, n_iter_no_change=10,
nesterovs_momentum=True, power_t=0.5,
random_state=None, shuffle=True, solver='adam',
tol=0.0001, validation_fraction=0.1,
verbose=False, warm_start=False))],
verbose=False) 0.8973772550091083
Pipeline(memory=None,
steps=[('std',
RobustScaler(copy=True, quantile_range=(25.0, 75.0),
with_centering=True, with_scaling=True)),
('reg',
LinearRegression(copy_X=True, fit_intercept=False, n_jobs=None,
normalize=False))],
verbose=False) 0.4564902261585433
Pipeline(memory=None,
steps=[('std',
RobustScaler(copy=True, quantile_range=(25.0, 75.0),
with_centering=True, with_scaling=True)),
('reg',
RandomForestRegressor(bootstrap=True, ccp_alpha=0.0,
criterion='mse', max_depth=None,
max_features='auto', max_leaf_nodes=None,
max_samples=None,
min_impurity_decrease=0.0,
min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0,
n_estimators=50, n_jobs=None,
oob_score=False, random_state=None,
verbose=0, warm_start=False))],
verbose=False) 0.9227186801245771
Pipeline(memory=None,
steps=[('std',
RobustScaler(copy=True, quantile_range=(25.0, 75.0),
with_centering=True, with_scaling=True)),
('reg',
MLPRegressor(activation='relu', alpha=0.0001,
batch_size='auto', beta_1=0.9, beta_2=0.999,
early_stopping=False, epsilon=1e-08,
hidden_layer_sizes=(100, 100, 100),
learning_rate='constant',
learning_rate_init=0.001, max_fun=15000,
max_iter=200, momentum=0.9, n_iter_no_change=10,
nesterovs_momentum=True, power_t=0.5,
random_state=None, shuffle=True, solver='adam',
tol=0.0001, validation_fraction=0.1,
verbose=False, warm_start=False))],
verbose=False) 0.9050783796791471
/Users/benjamin/.pyenv/versions/3.7.3/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklearn/neural_network/_multilayer_perceptron.py:571: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (200) reached and the optimization hasn't converged yet.
% self.max_iter, ConvergenceWarning)