In [1]:
import ee
ee.Initialize()

In [2]:
from geetools import tools, batch, algorithms

In [3]:
from ipygee import *

In [4]:
Map = Map()
Map.show()



In [5]:
p = ee.Geometry.Point([-72, -42])

In [6]:
Map.centerObject(p, zoom=10)

In [7]:
l8 = ee.ImageCollection('LANDSAT/LC08/C01/T1_TOA').filterBounds(p).filterMetadata('CLOUD_COVER', 'less_than', 10)

In [8]:
l8i = ee.Image(l8.first())

In [9]:
rgb = ['B4', 'B3', 'B2']

In [10]:
nsr = ['B5', 'B6', 'B4']

In [11]:
visrgb = {'bands': rgb, 'min':0, 'max':0.3}
visnsr = {'bands': nsr, 'min':0, 'max':0.5}

In [12]:
Map.addLayer(l8i, visrgb, 'original RGB')

In [13]:
Map.addLayer(l8i, visnsr, 'original NSR')

pansharpening hsv


In [14]:
pan_hsv_rgb = algorithms.pansharpenIhsFusion(l8i, 'B8', rgb)

In [15]:
Map.addLayer(pan_hsv_rgb, {'bands':['red', 'green', 'blue'], 'min':0, 'max':0.2}, 'HSV pansharpen RGB')

In [16]:
pan_hsv_nsr = algorithms.pansharpenIhsFusion(l8i, 'B8', nsr)

In [17]:
Map.addLayer(pan_hsv_nsr, {'bands':['red', 'green', 'blue'], 'min':0, 'max':0.2}, 'HSV pansharpen NSR')

pansharpening kernel


In [18]:
pan_kernel_rgb = algorithms.pansharpenKernel(l8i, 'B8', rgb)

In [19]:
Map.addLayer(pan_kernel_rgb, {'bands':rgb, 'min':0, 'max':0.3}, 'kernel pansharpen RGB')

In [20]:
pan_kernel_nsr = algorithms.pansharpenKernel(l8i, 'B8', nsr)

In [21]:
Map.addLayer(pan_kernel_nsr, {'bands':nsr, 'min':0, 'max':0.5}, 'kernel pansharpen NSR')

In [ ]: