In [1]:
#configure plotting
%matplotlib inline
%config InlineBackend.figure_format = 'svg'
import matplotlib;matplotlib.rcParams['figure.figsize'] = (8,5)
from matplotlib import pyplot as plt

Tutorial : A kernel overview

Nicolas Durrande and James Hensman, 2013, 2014

The aim of this tutorial is to give a better understanding of the kernel objects in GPy and to list the ones that are already implemented.

First we import the libraries we will need


In [2]:
import GPy
import numpy as np

basics: construction, printing and plotting

For most kernels, the input dimension (domain) is the only mandatory parameter to define a kernel object. However, it is also possible to specify the values of the parameters. For example, the three following commands are valid for defining a squared exponential kernel (ie rbf or Gaussian)


In [3]:
ker1 = GPy.kern.RBF(1)  # Equivalent to ker1 = GPy.kern.rbf(input_dim=1, variance=1., lengthscale=1.)
ker2 = GPy.kern.RBF(input_dim=1, variance = .75, lengthscale=2.)
ker3 = GPy.kern.RBF(1, .5, .5)

A print and a plot function are implemented to represent kernel objects.


In [4]:
print ker2


  rbf.         |  value  |  constraints  |  priors
  variance     |   0.75  |      +ve      |        
  lengthscale  |    2.0  |      +ve      |        

In [5]:
_ = ker1.plot(ax=plt.gca())
_ = ker2.plot(ax=plt.gca())
_ = ker3.plot(ax=plt.gca())


Implemented kernels

Many kernels are already implemented in GPy. The following figure gives a summary of some of them (a comprehensive list can be list can be found but typing GPy.kern.<tab>):


In [6]:
figure, axes = plt.subplots(3,3, figsize=(10,10), tight_layout=True)
kerns = [GPy.kern.RBF(1), GPy.kern.Exponential(1), GPy.kern.Matern32(1), GPy.kern.Matern52(1), GPy.kern.Brownian(1), GPy.kern.Bias(1), GPy.kern.Linear(1), GPy.kern.PeriodicExponential(1), GPy.kern.White(1)]
for k,a in zip(kerns, axes.flatten()):
    k.plot(ax=a, x=1)
    a.set_title(k.name.replace('_', ' '))


 /home/maxz/anaconda/lib/python2.7/site-packages/matplotlib/figure.py:1653: UserWarning:This figure includes Axes that are not compatible with tight_layout, so its results might be incorrect.

Operations to combine kernels

In GPy, kernel objects can be added or multiplied to create a mutlitude of kernel objects. Parameters and their gradients are handled automatically, and so appear in the combined objects. When kernels are used inside GP objects all the necessary graidents are automagically computed using the chain-rule.


In [7]:
# Product of kernels
k1 = GPy.kern.RBF(1,1.,2.)
k2 = GPy.kern.Matern32(1, 0.5, 0.2)
k_prod = k1 *k2
print k_prod
k_prod.plot()



# Sum of kernels
k1 = GPy.kern.RBF(1,1.,2.)
k2 = GPy.kern.Matern32(1, 0.5, 0.2)
k_add = k1 + k2
print k_add
k_add.plot()


  mul.               |  value  |  constraints  |  priors
  rbf.variance       |    1.0  |      +ve      |        
  rbf.lengthscale    |    2.0  |      +ve      |        
  Mat32.variance     |    0.5  |      +ve      |        
  Mat32.lengthscale  |    0.2  |      +ve      |        
  sum.               |  value  |  constraints  |  priors
  rbf.variance       |    1.0  |      +ve      |        
  rbf.lengthscale    |    2.0  |      +ve      |        
  Mat32.variance     |    0.5  |      +ve      |        
  Mat32.lengthscale  |    0.2  |      +ve      |        
Out[7]:
<matplotlib.axes._subplots.AxesSubplot at 0x7f9ece1ee3d0>

Note that the kernels that have been added are pythonic in that the objects remain linked: changing parameters of an add kernel changes those of the constituent parts, and vice versa


In [8]:
print k1, '\n'
k_add.rbf.variance = 12.
print k1


  rbf.         |  value  |  constraints  |  priors
  variance     |    1.0  |      +ve      |        
  lengthscale  |    2.0  |      +ve      |         

  rbf.         |  value  |  constraints  |  priors
  variance     |   12.0  |      +ve      |        
  lengthscale  |    2.0  |      +ve      |        

Operating on different domains

When multiplying and adding kernels, there are two general possibilites, one can assume that the kernels to add/multiply are defined on the same space or on different spaces:

  • a kernel over $\mathbb{R} \times \mathbb{R}: k(x,x') = k_1(x,x') \times k_2(x,x')$
  • a kernel over $\mathbb{R}^2 \times \mathbb{R}^2: k(\mathbf{x},\mathbf{x}') = k_1(x_1,x'_1) \times k_2(x_2,x'_2)$

To keep things as general as possible, in GPy kernels are assigned active_dims which tell the kernel what to work on. To create a kernel which is a product of krnels on different spaces, we can do


In [9]:
k1 = GPy.kern.Linear(input_dim=1, active_dims=[0]) # works on the first column of X, index=0
k2 = GPy.kern.ExpQuad(input_dim=1, lengthscale=3, active_dims=[1]) # works on the second column of X, index=1
k = k1 * k2
k.plot(x=np.ones((1,2)))


Out[9]:
<matplotlib.axes._subplots.AxesSubplot at 0x7f9eb7993150>

In [10]:
def plot_sample(k):
    xx, yy = np.mgrid[-3:3:30j, -3:3:30j]
    X = np.vstack((xx.flatten(), yy.flatten())).T
    K = k.K(X)
    s = np.random.multivariate_normal(np.zeros(X.shape[0]), K)
    #plt.contourf(xx, yy, s.reshape(*xx.shape), cmap=plt.cm.hot)
    plt.imshow(s.reshape(*xx.shape), interpolation='nearest')
    plt.colorbar()
plot_sample(k)


 /home/maxz/anaconda/lib/python2.7/site-packages/ipykernel/__main__.py:5: RuntimeWarning:covariance is not positive-semidefinite.

In [11]:
k1 = GPy.kern.PeriodicExponential(input_dim=1, active_dims=[0], period=6, lower=-10, upper=10)# + GPy.kern.Bias(1, variance=0, active_dims=[0])
k2 = GPy.kern.PeriodicExponential(input_dim=1, active_dims=[1], period=8, lower=-10, upper=10)# + GPy.kern.Bias(1, variance=0, active_dims=[0])

#k2 = GPy.kern.ExpQuad(1, active_dims=[1])
k = k1 * k2
plot_sample(k)


 /home/maxz/anaconda/lib/python2.7/site-packages/ipykernel/__main__.py:5: RuntimeWarning:covariance is not positive-semidefinite.

In [ ]: