In [1]:
%pylab inline
In [2]:
from ggplot import *
import pandas as pd
In [11]:
data = pd.DataFrame(
dict(epoch=range(1,11)+range(1,11)+range(1,11)+range(1,8)+range(1,11)+range(1,11),
model=hstack([repeat("char-3-grow", 10),
repeat("char-1", 10),
repeat("char-3", 10),
repeat("visual", 7),
repeat("multitask",10),
repeat("sum", 10)]),
recall=[#char-3-grow lw0222.uvt.nl:/home/gchrupala/reimaginet/run-110-phon
0.097281087565,
0.140863654538,
0.161015593762,
0.173410635746,
0.176969212315,
0.175529788085,
0.175089964014,
0.174010395842,
0.173370651739,
0.173050779688,
# char-1 yellow.uvt.nl:/home/gchrupala/repos/reimagine/run-200-phon
0.100919632147,
0.127588964414,
0.140583766493,
0.148300679728,
0.150739704118,
0.153338664534,
0.156657337065,
0.159016393443,
0.159056377449,
0.160655737705,
# char-3 yellow.uvt.nl:/home/gchrupala/repos/reimagine/run-201-phon
0.078368652539,
0.125789684126,
0.148140743703,
0.158216713315,
0.163694522191,
0.168612554978,
0.172570971611,
0.17181127549,
0.171531387445,
0.170611755298,
# visual
0.160015993603,
0.184406237505,
0.193202718912,
0.19956017593,
0.201079568173,
0.201719312275,
0.19944022391,
# multitask
0.16093562575,
0.185525789684,
0.194482207117,
0.202758896441,
0.203558576569,
0.20243902439,
0.199240303878,
0.195361855258,
0.193242702919,
0.189924030388,
# sum
0.137984806078,
0.145581767293,
0.149340263894,
0.151819272291,
0.152898840464,
0.154218312675,
0.155257896841,
0.155697720912,
0.15637744902,
0.156657337065
]))
In [6]:
def standardize(x):
return (x-numpy.mean(x))/numpy.std(x)
Models:
Remarks:
In [21]:
ggplot(data.loc[data['model'].isin(['sum','char-1','char-3','char-3-grow','multitask'])],
aes(x='epoch', y='recall', color='model')) + geom_line(size=3) + theme()
Out[21]:
In [19]:
ggplot(data.loc[data['model'].isin(['visual','multitask','sum'])],
aes(x='epoch', y='recall', color='model')) + geom_line(size=3) + theme()
Out[19]:
In [8]:
data_grow = pd.DataFrame(dict(epoch=range(1,11)+range(1,11),
model=hstack([repeat("gru-2-grow", 10),repeat("gru-1", 10)]),
recall=[#gru-1
0.170971611355,
0.192163134746,
0.206797281088,
0.211355457817,
0.21331467413,
0.218992403039,
0.214674130348,
0.214634146341,
0.214434226309,
0.212115153938,
# gru-2-grow
0.173730507797,
0.198320671731,
0.206117552979,
0.211715313874,
0.212914834066,
0.211915233906,
0.209956017593,
0.210795681727,
0.209076369452,
0.208996401439
]))
Models:
Remarks:
In [10]:
ggplot(data_grow, aes(x='epoch', y='recall', color='model')) + geom_line(size=3) + theme()
Out[10]:
In [ ]: