Regression modeling with statsmodel


In [1]:
import numpy as np
import statsmodels.api as sm
import matplotlib.pyplot as plt
from statsmodels.sandbox.regression.predstd import wls_prediction_std

%matplotlib inline

Basic Example


In [2]:
# load example data
spector_data = sm.datasets.spector.load()
spector_data.exog = sm.add_constant(spector_data.exog, prepend=False)

In [3]:
# fit and summarize OLS model
mod = sm.OLS(spector_data.endog, spector_data.exog)
res = mod.fit()
print(res.summary())


                            OLS Regression Results                            
==============================================================================
Dep. Variable:                      y   R-squared:                       0.416
Model:                            OLS   Adj. R-squared:                  0.353
Method:                 Least Squares   F-statistic:                     6.646
Date:                Thu, 23 Jun 2016   Prob (F-statistic):            0.00157
Time:                        17:57:48   Log-Likelihood:                -12.978
No. Observations:                  32   AIC:                             33.96
Df Residuals:                      28   BIC:                             39.82
Df Model:                           3                                         
Covariance Type:            nonrobust                                         
==============================================================================
                 coef    std err          t      P>|t|      [95.0% Conf. Int.]
------------------------------------------------------------------------------
x1             0.4639      0.162      2.864      0.008         0.132     0.796
x2             0.0105      0.019      0.539      0.594        -0.029     0.050
x3             0.3786      0.139      2.720      0.011         0.093     0.664
const         -1.4980      0.524     -2.859      0.008        -2.571    -0.425
==============================================================================
Omnibus:                        0.176   Durbin-Watson:                   2.346
Prob(Omnibus):                  0.916   Jarque-Bera (JB):                0.167
Skew:                           0.141   Prob(JB):                        0.920
Kurtosis:                       2.786   Cond. No.                         176.
==============================================================================

Warnings:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

More detailed example


In [4]:
# create artificial data
np.random.seed(9876789)
nsample = 100
x = np.linspace(0, 10, 100)
X = np.column_stack((x, x**2))
beta = np.array([1, 0.1, 10])
e = np.random.normal(size=nsample)

In [5]:
# we need an intercept so create a column of ones
X = sm.add_constant(X)
y = np.dot(X, beta) + e

In [6]:
# fit and summary
model = sm.OLS(y, X)
results = model.fit()
print(results.summary())


                            OLS Regression Results                            
==============================================================================
Dep. Variable:                      y   R-squared:                       1.000
Model:                            OLS   Adj. R-squared:                  1.000
Method:                 Least Squares   F-statistic:                 4.020e+06
Date:                Thu, 23 Jun 2016   Prob (F-statistic):          2.83e-239
Time:                        17:57:48   Log-Likelihood:                -146.51
No. Observations:                 100   AIC:                             299.0
Df Residuals:                      97   BIC:                             306.8
Df Model:                           2                                         
Covariance Type:            nonrobust                                         
==============================================================================
                 coef    std err          t      P>|t|      [95.0% Conf. Int.]
------------------------------------------------------------------------------
const          1.3423      0.313      4.292      0.000         0.722     1.963
x1            -0.0402      0.145     -0.278      0.781        -0.327     0.247
x2            10.0103      0.014    715.745      0.000         9.982    10.038
==============================================================================
Omnibus:                        2.042   Durbin-Watson:                   2.274
Prob(Omnibus):                  0.360   Jarque-Bera (JB):                1.875
Skew:                           0.234   Prob(JB):                        0.392
Kurtosis:                       2.519   Cond. No.                         144.
==============================================================================

Warnings:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

In [7]:
print('Parameters: ', results.params)
print('R2: ', results.rsquared)


Parameters:  [  1.34233516  -0.04024948  10.01025357]
R2:  0.999987936503

In [8]:
# now simulate artificial data with a non-linear relationship between x and y
nsample = 50
sig = 0.5
x = np.linspace(0, 20, nsample)
X = np.column_stack((x, np.sin(x), (x-5)**2, np.ones(nsample)))
beta = [0.5, 0.5, -0.02, 5.]

y_true = np.dot(X, beta)
y = y_true + sig * np.random.normal(size=nsample)

In [9]:
# fit and summary
res = sm.OLS(y, X).fit()
print(res.summary())


                            OLS Regression Results                            
==============================================================================
Dep. Variable:                      y   R-squared:                       0.933
Model:                            OLS   Adj. R-squared:                  0.928
Method:                 Least Squares   F-statistic:                     211.8
Date:                Thu, 23 Jun 2016   Prob (F-statistic):           6.30e-27
Time:                        17:57:48   Log-Likelihood:                -34.438
No. Observations:                  50   AIC:                             76.88
Df Residuals:                      46   BIC:                             84.52
Df Model:                           3                                         
Covariance Type:            nonrobust                                         
==============================================================================
                 coef    std err          t      P>|t|      [95.0% Conf. Int.]
------------------------------------------------------------------------------
x1             0.4687      0.026     17.751      0.000         0.416     0.522
x2             0.4836      0.104      4.659      0.000         0.275     0.693
x3            -0.0174      0.002     -7.507      0.000        -0.022    -0.013
const          5.2058      0.171     30.405      0.000         4.861     5.550
==============================================================================
Omnibus:                        0.655   Durbin-Watson:                   2.896
Prob(Omnibus):                  0.721   Jarque-Bera (JB):                0.360
Skew:                           0.207   Prob(JB):                        0.835
Kurtosis:                       3.026   Cond. No.                         221.
==============================================================================

Warnings:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

In [10]:
print('Parameters: ', res.params)
print('Standard errors: ', res.bse)
print('Predicted values: ', res.predict())


Parameters:  [ 0.46872448  0.48360119 -0.01740479  5.20584496]
Standard errors:  [ 0.02640602  0.10380518  0.00231847  0.17121765]
Predicted values:  [  4.77072516   5.22213464   5.63620761   5.98658823   6.25643234
   6.44117491   6.54928009   6.60085051   6.62432454   6.6518039
   6.71377946   6.83412169   7.02615877   7.29048685   7.61487206
   7.97626054   8.34456611   8.68761335   8.97642389   9.18997755
   9.31866582   9.36587056   9.34740836   9.28893189   9.22171529
   9.17751587   9.1833565    9.25708583   9.40444579   9.61812821
   9.87897556  10.15912843  10.42660281  10.65054491  10.8063004
  10.87946503  10.86825119  10.78378163  10.64826203  10.49133265
  10.34519853  10.23933827  10.19566084  10.22490593  10.32487947
  10.48081414  10.66779556  10.85485568  11.01006072  11.10575781]

In [11]:
# plot to compare the true relationship to OLS predictions
prstd, iv_l, iv_u = wls_prediction_std(res)
fig, ax = plt.subplots(figsize=(8,6))

ax.plot(x, y, 'o', label="data")
ax.plot(x, y_true, 'b-', label="True")
ax.plot(x, res.fittedvalues, 'r--.', label="OLS")
ax.plot(x, iv_u, 'r--')
ax.plot(x, iv_l, 'r--')
ax.legend(loc='best');



In [ ]: