In [1]:
from IPython.display import Image,HTML
import matplotlib.pyplot as plt
%matplotlib inline
http://fermi.gsfc.nasa.gov/ssc/data/policy/PDMP.pdf
The GSSC will make data available to a GI as the GI’s Phase 2 observations occur. Analysis software, ancillary data, and related documentation will be available on the GSSC’s website. The GSSC will furnish online and human expertise in analyzing the data. The GSSC will also support a library with catalogs and other ancillary information to assist the investigator community.
In [2]:
data = plt.imread('images/cmap_roi_example.png')
plt.figure(figsize=(8,8))
plt.imshow(data)
plt.annotate(
'', xy=(0, 100), xycoords = 'data',
xytext = (400, 100), textcoords = 'data',
arrowprops = {'facecolor':'white','edgecolor':'white'})
plt.annotate(
'', xy=(750, 100), xycoords = 'data',
xytext = (400, 100), textcoords = 'data',
arrowprops = {'facecolor':'white','edgecolor':'white'})
plt.text(300, 150, '20 Degrees',fontsize=20,color='white')
plt.text(250,820,"0.1 GeV - 100 GeV",fontsize=20)
plt.savefig('images/cmap_roi_example_annote.png')
plt.show()
In [3]:
Image("http://apod.nasa.gov/apod/image/1205/LatPolar_Vela.jpg")
Out[3]:
More info: http://fermi.gsfc.nasa.gov/ssc/data/analysis/documentation/Cicerone/Cicerone_LAT_IRFs/index.html
or: http://www.slac.stanford.edu/exp/glast/groups/canda/lat_Performance.htm
More info: http://fermi.gsfc.nasa.gov/ssc/data/analysis/documentation/Cicerone/Cicerone_LAT_IRFs/index.html
or: http://www.slac.stanford.edu/exp/glast/groups/canda/lat_Performance.htm
More info: http://fermi.gsfc.nasa.gov/ssc/data/analysis/documentation/Cicerone/Cicerone_LAT_IRFs/index.html
or: http://www.slac.stanford.edu/exp/glast/groups/canda/lat_Performance.htm
Instantaneous Response(Measured Params,True Params, Time) = EA x PSF x ED
$$R_t(E, \vec{p}, E^T, \vec{p^T},t) = A(E^T, \vec{p^T},t) \times P(\vec{p},\vec{p^T},E^T,t) \times D(E; E^T,\vec{p},\vec{p^T},t)$$Total Response
$$R(E, \vec{p}; E^T, \vec{p^T}) = \int dt R_t(E, \vec{p}; E^T,\vec{p^T},t)$$Total 'Exposure' in units of cm2s
$$\int_0^\infty dE \int _{4\pi} d\vec{p}\ R(E, \vec{p}, E^T, \vec{p^T}) = \int_{t_0}^{t_1} dt A(E^T, \vec{p^T},t) = X(E^T,\vec{p^T})$$Depine average PSF and ED
$$R(E,\vec{p}, E^T, \vec{p^T}) = X(E^T,\vec{p^T}) \bar{P}(\vec{p},\vec{p^T},E^T) \bar{D}(E,E^T,\vec{p},\vec{p^T})$$