This notebook shows how make a graphical representation of a series of XPS data experiments.
This notebook only deals with how to use the xpsplot. Look at read_XPS_data_long.ipynb for more details on the implementation.
This module relies on matplotlib, pandas and numpy modules.
In [1]:
%matplotlib inline
In [2]:
import xpsplot
In [3]:
report1 = xpsplot.XPSData.from_file("report1.TXT")
print(report1)
In [4]:
report1.set_all_column_names("", "", "carb", "", "", "tata", "toto", "titi", "tutu")
report1.list_columns()
In [5]:
report1.get_plot(columns=["Exp", "carb", "titi", "tutu"], fill=True, fname=False)
Out[5]:
In [6]:
stuff = xpsplot.StackedXPSData("report1.TXT", "report2.TXT", "report2.TXT")
print(stuff)
In [7]:
stuff.title = "C1s of a nice surface"
In [8]:
stuff.set_all_column_names("", "", "carb", "", "", "tata", "toto", "titi", "tutu")
stuff.list_columns()
In [9]:
fig = stuff.get_plot()
As previously you can select columns :
In [10]:
fig = stuff.get_plot(columns=["Exp", "carb", "titi", "tutu"])
You can also:
In [11]:
fig = stuff.get_plot(columns=["Exp", "carb", "titi", "tutu"], fill=True, pos=[284.5, 290.9, 286.5])