Initialization
---------------------------------------------------------------------------------------------------------------------------
Step | Time | Value | alpha | colsample_bytree | gamma | max_depth | min_child_weight | subsample |
1 | 39m06s | -0.35439 | 40.9091 | 0.8879 | 209.7051 | 14.7205 | 209.1722 | 0.7074 |
2 | 47m55s | -0.34504 | 47.2878 | 0.9610 | 119.4465 | 15.3950 | 135.2350 | 0.6957 |
3 | 43m39s | -0.32722 | 35.9217 | 0.6858 | 34.2860 | 15.1360 | 241.8153 | 0.5349 |
4 | 56m28s | -0.33521 | 33.1134 | 0.5365 | 89.7676 | 19.0541 | 117.0763 | 0.8600 |
5 | 22m59s | -0.36261 | 95.6889 | 0.9369 | 267.1396 | 14.0558 | 231.3146 | 0.7032 |
6 | 64m28s | -0.34798 | 37.6857 | 0.5635 | 155.4990 | 21.6794 | 44.4108 | 0.7215 |
7 | 56m20s | -0.33450 | 28.3308 | 0.8464 | 89.0903 | 24.0621 | 207.7963 | 0.9485 |
8 | 64m15s | -0.33547 | 78.2682 | 0.7521 | 56.0049 | 20.7525 | 39.7263 | 0.6990 |
9 | 38m24s | -0.34970 | 41.5086 | 0.9748 | 186.7007 | 18.6853 | 53.9903 | 0.9491 |
10 | 25m01s | -0.36135 | 24.0583 | 0.9582 | 260.9471 | 22.4963 | 229.0120 | 0.5641 |
Bayesian Optimization
---------------------------------------------------------------------------------------------------------------------------
Step | Time | Value | alpha | colsample_bytree | gamma | max_depth | min_child_weight | subsample |
11 | 17m00s | -0.32849 | 2.7808 | 0.7340 | 0.6996 | 19.0942 | 4.4397 | 0.5308 |
12 | 52m37s | -0.31593 | 99.8932 | 0.5787 | 0.3930 | 24.0735 | 177.0115 | 0.7267 |
/home/ale/anaconda3/lib/python3.6/site-packages/sklearn/gaussian_process/gpr.py:427: UserWarning: fmin_l_bfgs_b terminated abnormally with the state: {'grad': array([ -3.53294692e-05]), 'task': b'ABNORMAL_TERMINATION_IN_LNSRCH', 'funcalls': 52, 'nit': 4, 'warnflag': 2}
" state: %s" % convergence_dict)
/home/ale/anaconda3/lib/python3.6/site-packages/sklearn/gaussian_process/gpr.py:427: UserWarning: fmin_l_bfgs_b terminated abnormally with the state: {'grad': array([ -2.55037043e-05]), 'task': b'ABNORMAL_TERMINATION_IN_LNSRCH', 'funcalls': 52, 'nit': 4, 'warnflag': 2}
" state: %s" % convergence_dict)
/home/ale/anaconda3/lib/python3.6/site-packages/sklearn/gaussian_process/gpr.py:427: UserWarning: fmin_l_bfgs_b terminated abnormally with the state: {'grad': array([ -9.15748522e-05]), 'task': b'ABNORMAL_TERMINATION_IN_LNSRCH', 'funcalls': 47, 'nit': 4, 'warnflag': 2}
" state: %s" % convergence_dict)
/home/ale/anaconda3/lib/python3.6/site-packages/sklearn/gaussian_process/gpr.py:427: UserWarning: fmin_l_bfgs_b terminated abnormally with the state: {'grad': array([ 2.30744884e-05]), 'task': b'ABNORMAL_TERMINATION_IN_LNSRCH', 'funcalls': 52, 'nit': 5, 'warnflag': 2}
" state: %s" % convergence_dict)
13 | 59m56s | -0.30812 | 5.8836 | 0.9930 | 0.0201 | 22.5715 | 155.1168 | 0.7922 |
14 | 66m22s | -0.30771 | 0.7909 | 0.8192 | 0.6420 | 23.2454 | 221.3153 | 0.9933 |
15 | 31m55s | -0.36133 | 98.9739 | 0.5986 | 299.4269 | 20.4427 | 4.4245 | 0.9434 |
16 | 49m34s | -0.30837 | 10.5616 | 0.6250 | 0.1537 | 24.5326 | 96.2393 | 0.7614 |
/home/ale/anaconda3/lib/python3.6/site-packages/sklearn/gaussian_process/gpr.py:427: UserWarning: fmin_l_bfgs_b terminated abnormally with the state: {'grad': array([ 2.45236079e-05]), 'task': b'ABNORMAL_TERMINATION_IN_LNSRCH', 'funcalls': 52, 'nit': 5, 'warnflag': 2}
" state: %s" % convergence_dict)
17 | 52m08s | -0.31441 | 96.2783 | 0.6723 | 0.5884 | 23.8512 | 243.4796 | 0.8714 |
18 | 57m42s | -0.31008 | 37.7618 | 0.6447 | 0.3201 | 24.3899 | 186.3127 | 0.7086 |
19 | 55m35s | -0.31204 | 14.7288 | 0.6732 | 0.8867 | 24.3769 | 248.4960 | 0.5310 |
20 | 66m17s | -0.30964 | 3.9783 | 0.5737 | 0.4043 | 24.5980 | 182.1146 | 0.5926 |
21 | 62m20s | -0.30946 | 73.9897 | 0.5608 | 0.3025 | 24.4239 | 99.7665 | 0.9610 |
22 | 73m01s | -0.31141 | 99.8335 | 0.5765 | 2.1759 | 23.2525 | 7.0532 | 0.7080 |
/home/ale/anaconda3/lib/python3.6/site-packages/sklearn/gaussian_process/gpr.py:427: UserWarning: fmin_l_bfgs_b terminated abnormally with the state: {'grad': array([-0.00019033]), 'task': b'ABNORMAL_TERMINATION_IN_LNSRCH', 'funcalls': 48, 'nit': 5, 'warnflag': 2}
" state: %s" % convergence_dict)
/home/ale/anaconda3/lib/python3.6/site-packages/sklearn/gaussian_process/gpr.py:427: UserWarning: fmin_l_bfgs_b terminated abnormally with the state: {'grad': array([ -4.33475152e-05]), 'task': b'ABNORMAL_TERMINATION_IN_LNSRCH', 'funcalls': 49, 'nit': 5, 'warnflag': 2}
" state: %s" % convergence_dict)
23 | 46m33s | -0.31138 | 98.9621 | 0.5712 | 1.1259 | 14.0705 | 58.3244 | 0.9225 |
24 | 49m06s | -0.30967 | 40.5088 | 0.6906 | 1.3559 | 15.4265 | 117.2166 | 0.7209 |
/home/ale/anaconda3/lib/python3.6/site-packages/sklearn/gaussian_process/gpr.py:427: UserWarning: fmin_l_bfgs_b terminated abnormally with the state: {'grad': array([ -1.26219243e-05]), 'task': b'ABNORMAL_TERMINATION_IN_LNSRCH', 'funcalls': 53, 'nit': 6, 'warnflag': 2}
" state: %s" % convergence_dict)
25 | 63m13s | -0.31011 | 44.7346 | 0.8490 | 0.2750 | 24.7136 | 68.4267 | 0.6126 |
26 | 62m41s | -0.30843 | 41.3380 | 0.9789 | 1.0484 | 24.6976 | 132.1144 | 0.8146 |
27 | 55m50s | -0.30910 | 2.6147 | 0.8540 | 1.0764 | 24.7126 | 135.0514 | 0.5874 |
/home/ale/anaconda3/lib/python3.6/site-packages/sklearn/gaussian_process/gpr.py:427: UserWarning: fmin_l_bfgs_b terminated abnormally with the state: {'grad': array([-0.00011016]), 'task': b'ABNORMAL_TERMINATION_IN_LNSRCH', 'funcalls': 53, 'nit': 5, 'warnflag': 2}
" state: %s" % convergence_dict)
28 | 44m34s | -0.35675 | 0.2699 | 0.7420 | 292.0935 | 20.2122 | 2.6155 | 0.7605 |
29 | 66m37s | -0.31221 | 98.0954 | 0.5113 | 0.5087 | 23.9113 | 42.6436 | 0.7495 |
30 | 45m39s | -0.30904 | 9.3252 | 0.9185 | 0.3846 | 14.8397 | 221.6919 | 0.9531 |
31 | 50m56s | -0.30814 | 27.2849 | 0.5164 | 0.6085 | 15.5688 | 153.1154 | 0.8479 |
32 | 42m04s | -0.31012 | 2.0498 | 0.9014 | 0.8738 | 14.3822 | 247.4683 | 0.9685 |
/home/ale/anaconda3/lib/python3.6/site-packages/sklearn/gaussian_process/gpr.py:427: UserWarning: fmin_l_bfgs_b terminated abnormally with the state: {'grad': array([ -7.12932861e-05]), 'task': b'ABNORMAL_TERMINATION_IN_LNSRCH', 'funcalls': 52, 'nit': 4, 'warnflag': 2}
" state: %s" % convergence_dict)
33 | 62m07s | -0.30884 | 58.5612 | 0.8830 | 0.0770 | 24.7369 | 147.9597 | 0.9621 |
/home/ale/anaconda3/lib/python3.6/site-packages/sklearn/gaussian_process/gpr.py:427: UserWarning: fmin_l_bfgs_b terminated abnormally with the state: {'grad': array([-0.00017757]), 'task': b'ABNORMAL_TERMINATION_IN_LNSRCH', 'funcalls': 51, 'nit': 3, 'warnflag': 2}
" state: %s" % convergence_dict)
34 | 44m26s | -0.30812 | 0.3357 | 0.6579 | 0.6736 | 14.0217 | 94.7632 | 0.8891 |
/home/ale/anaconda3/lib/python3.6/site-packages/sklearn/gaussian_process/gpr.py:427: UserWarning: fmin_l_bfgs_b terminated abnormally with the state: {'grad': array([-0.0002341]), 'task': b'ABNORMAL_TERMINATION_IN_LNSRCH', 'funcalls': 51, 'nit': 3, 'warnflag': 2}
" state: %s" % convergence_dict)
35 | 42m35s | -0.31819 | 95.6468 | 0.8181 | 1.3811 | 14.1107 | 118.6550 | 0.5341 |
/home/ale/anaconda3/lib/python3.6/site-packages/sklearn/gaussian_process/gpr.py:427: UserWarning: fmin_l_bfgs_b terminated abnormally with the state: {'grad': array([ -7.89216033e-05]), 'task': b'ABNORMAL_TERMINATION_IN_LNSRCH', 'funcalls': 55, 'nit': 6, 'warnflag': 2}
" state: %s" % convergence_dict)
36 | 52m02s | -0.31063 | 69.8374 | 0.8851 | 0.1619 | 15.3553 | 28.0674 | 0.6940 |
/home/ale/anaconda3/lib/python3.6/site-packages/sklearn/gaussian_process/gpr.py:427: UserWarning: fmin_l_bfgs_b terminated abnormally with the state: {'grad': array([ 1.86705402e-05]), 'task': b'ABNORMAL_TERMINATION_IN_LNSRCH', 'funcalls': 60, 'nit': 5, 'warnflag': 2}
" state: %s" % convergence_dict)
37 | 44m14s | -0.30869 | 41.5699 | 0.7984 | 0.3015 | 14.0881 | 87.4885 | 0.9978 |
/home/ale/anaconda3/lib/python3.6/site-packages/sklearn/gaussian_process/gpr.py:427: UserWarning: fmin_l_bfgs_b terminated abnormally with the state: {'grad': array([-0.00073698]), 'task': b'ABNORMAL_TERMINATION_IN_LNSRCH', 'funcalls': 48, 'nit': 4, 'warnflag': 2}
" state: %s" % convergence_dict)
38 | 55m59s | -0.30902 | 66.3239 | 0.9282 | 0.0420 | 18.4651 | 72.1133 | 0.9777 |
39 | 46m08s | -0.31010 | 9.7401 | 0.7009 | 0.3059 | 14.2532 | 112.4993 | 0.5290 |
40 | 39m58s | -0.30833 | 0.2566 | 0.6293 | 0.0413 | 14.5258 | 68.2951 | 0.7891 |
41 | 63m20s | -0.30768 | 40.1063 | 0.9711 | 0.8375 | 23.8364 | 155.1179 | 0.9538 |
42 | 47m20s | -0.30742 | 22.8385 | 0.6601 | 0.8411 | 15.3924 | 75.9327 | 0.8937 |
/home/ale/anaconda3/lib/python3.6/site-packages/sklearn/gaussian_process/gpr.py:427: UserWarning: fmin_l_bfgs_b terminated abnormally with the state: {'grad': array([ 0.00091882]), 'task': b'ABNORMAL_TERMINATION_IN_LNSRCH', 'funcalls': 52, 'nit': 6, 'warnflag': 2}
" state: %s" % convergence_dict)
43 | 46m34s | -0.30978 | 0.0240 | 0.7927 | 0.3399 | 14.2585 | 162.0086 | 0.6920 |
44 | 49m40s | -0.31584 | 71.1312 | 0.8211 | 0.0390 | 24.9970 | 212.3112 | 0.6052 |
45 | 41m55s | -0.30872 | 2.5027 | 0.9023 | 1.3560 | 23.8367 | 77.8532 | 0.7399 |
46 | 66m36s | -0.30748 | 26.7218 | 0.6785 | 0.7371 | 24.7548 | 167.1256 | 0.9742 |
47 | 47m35s | -0.30963 | 94.6468 | 0.6948 | 1.1237 | 14.1094 | 15.2666 | 0.9577 |
/home/ale/anaconda3/lib/python3.6/site-packages/sklearn/gaussian_process/gpr.py:427: UserWarning: fmin_l_bfgs_b terminated abnormally with the state: {'grad': array([ -2.22679721e-05]), 'task': b'ABNORMAL_TERMINATION_IN_LNSRCH', 'funcalls': 55, 'nit': 6, 'warnflag': 2}
" state: %s" % convergence_dict)
48 | 43m36s | -0.30770 | 7.6408 | 0.9449 | 0.0396 | 15.0925 | 85.8072 | 0.8853 |
49 | 60m21s | -0.30721 | 22.6943 | 0.7216 | 1.1096 | 24.6520 | 151.9854 | 0.9805 |
50 | 41m32s | -0.30804 | 22.7657 | 0.9886 | 0.6089 | 15.2693 | 62.2829 | 0.9661 |
51 | 43m32s | -0.30775 | 7.1888 | 0.6709 | 14.0725 | 14.0497 | 78.9252 | 0.9636 |
52 | 73m20s | -0.31141 | 0.1914 | 0.7702 | 33.2041 | 24.8587 | 131.6590 | 0.9561 |
/home/ale/anaconda3/lib/python3.6/site-packages/sklearn/gaussian_process/gpr.py:427: UserWarning: fmin_l_bfgs_b terminated abnormally with the state: {'grad': array([-0.00013552]), 'task': b'ABNORMAL_TERMINATION_IN_LNSRCH', 'funcalls': 52, 'nit': 5, 'warnflag': 2}
" state: %s" % convergence_dict)
53 | 72m23s | -0.31119 | 0.0571 | 0.8954 | 34.5318 | 23.6798 | 88.0164 | 0.9706 |
/home/ale/anaconda3/lib/python3.6/site-packages/sklearn/gaussian_process/gpr.py:427: UserWarning: fmin_l_bfgs_b terminated abnormally with the state: {'grad': array([-0.00027982]), 'task': b'ABNORMAL_TERMINATION_IN_LNSRCH', 'funcalls': 51, 'nit': 3, 'warnflag': 2}
" state: %s" % convergence_dict)
54 | 66m07s | -0.30902 | 26.6233 | 0.5966 | 14.4848 | 24.2913 | 148.9095 | 0.9995 |
55 | 50m42s | -0.30793 | 1.6068 | 0.6985 | 18.3976 | 15.5233 | 101.1254 | 0.8895 |
56 | 64m20s | -0.30845 | 53.1303 | 0.9457 | 0.3448 | 24.9161 | 99.8781 | 0.8858 |
57 | 70m16s | -0.30800 | 25.6143 | 0.7789 | 14.5492 | 24.1640 | 91.4880 | 0.9838 |
58 | 70m19s | -0.30951 | 23.7674 | 0.9166 | 18.9148 | 24.8147 | 113.0227 | 0.9846 |
/home/ale/anaconda3/lib/python3.6/site-packages/sklearn/gaussian_process/gpr.py:427: UserWarning: fmin_l_bfgs_b terminated abnormally with the state: {'grad': array([ -3.62047685e-05]), 'task': b'ABNORMAL_TERMINATION_IN_LNSRCH', 'funcalls': 53, 'nit': 4, 'warnflag': 2}
" state: %s" % convergence_dict)
59 | 54m07s | -0.30795 | 26.4134 | 0.8794 | 0.0068 | 23.9872 | 97.8655 | 0.9193 |
---------------------------------------------------------------------------
KeyboardInterrupt Traceback (most recent call last)
<ipython-input-13-d07f55483a20> in <module>()
9 other_par=other_par,
10 myranges=myranges,
---> 11 sgn=-1)
/home/ale/random_program/Quora_double_question/ourfunctions.py in go_with_BayesianOptimization(xg_train, xg_test, watchlist, params, other_par, num_iter, init_points, acq, kappa, myranges, sgn)
1153 xgbBO.maximize(
1154 init_points=init_points, n_iter=num_iter, acq=acq,
-> 1155 kappa=kappa) # poi, ei, ucb
1156
1157
/home/ale/anaconda3/lib/python3.6/site-packages/bayes_opt/bayesian_optimization.py in maximize(self, init_points, n_iter, acq, kappa, xi, **gp_params)
287 # Append most recently generated values to X and Y arrays
288 self.X = np.vstack((self.X, x_max.reshape((1, -1))))
--> 289 self.Y = np.append(self.Y, self.f(**dict(zip(self.keys, x_max))))
290
291 # Updating the GP.
/home/ale/random_program/Quora_double_question/ourfunctions.py in xgb_evaluate(min_child_weight, colsample_bytree, max_depth, subsample, gamma, alpha)
1122 # seed=random_state, callbacks=[xgb.callback.early_stop(25)]
1123 model_temp = xgb.train(
-> 1124 dtrain=xg_train, evals=watchlist, params=params, **other_par)
1125 # return -cv_result['test-merror-mean'].values[-1]
1126 return sgn*float(str(model_temp.eval(xg_test)).split(":")[1][0:-1])
/home/ale/anaconda3/lib/python3.6/site-packages/xgboost/training.py in train(params, dtrain, num_boost_round, evals, obj, feval, maximize, early_stopping_rounds, evals_result, verbose_eval, learning_rates, xgb_model, callbacks)
203 evals=evals,
204 obj=obj, feval=feval,
--> 205 xgb_model=xgb_model, callbacks=callbacks)
206
207
/home/ale/anaconda3/lib/python3.6/site-packages/xgboost/training.py in _train_internal(params, dtrain, num_boost_round, evals, obj, feval, xgb_model, callbacks)
74 # Skip the first update if it is a recovery step.
75 if version % 2 == 0:
---> 76 bst.update(dtrain, i, obj)
77 bst.save_rabit_checkpoint()
78 version += 1
/home/ale/anaconda3/lib/python3.6/site-packages/xgboost/core.py in update(self, dtrain, iteration, fobj)
804
805 if fobj is None:
--> 806 _check_call(_LIB.XGBoosterUpdateOneIter(self.handle, iteration, dtrain.handle))
807 else:
808 pred = self.predict(dtrain)
KeyboardInterrupt: