In [1]:
%matplotlib inline

In [2]:
import numpy as np

In [3]:
import os,sys
sys.path.append("/Users/flow/git/PySHEMAT/")

In [4]:
import PySHEMAT as PS

In [11]:
os.chdir("/Users/flow/Documents/02_work/62_simulation_results/entropy_production/09_with_init_1E12/PERIOD79/")

In [12]:
s_out = PS.Shemat_file("entropy_test_init.nlo")

In [13]:
s_out.create_slice_plot("TEMP", 'x', 10)


create slice plot
Model origin, x : 0
Model origin, y : 0
Model origin, z : 0

In [14]:
temperature = np.array(s_out.get_array_as_xyz_structure("TEMP"))

In [18]:
plt.imshow(temperature[:,0,:].transpose(), origin="lower left")


Out[18]:
<matplotlib.image.AxesImage at 0x107370d90>

Theis Drawdown curve

Example as result for first NRE exercise (as a little challenge for advanced users...)


In [19]:
# write function for well function
def W(u):
    return -0.5772 - np.log(u) + u - u**2 / (2 * math.factorial(2)) + u**3 / (3 * math.factorial(3))

In [20]:
def s(Q,T,u):
    return Q / (4 * np.pi * T) * W(u)

In [21]:
def u(r,S,T,t):
    return r**2 * S / (4 * T * t)

In [41]:
# time in hours
t = np.linspace(1,3600*30,1000)

In [62]:
# storativity
S = 0.05

In [63]:
# pumping rate
Q = 0.01 # l / s

In [64]:
T = 0.1
r = 0.06

In [65]:
drawdown = s(Q,T,u(r,S,T,t))

In [69]:
plt.plot(drawdown)
plt.xlabel("time")
plt.ylabel("drawdown")


Out[69]:
<matplotlib.text.Text at 0x1080ace10>

In [ ]: