In [1]:
INPUT_DIR = '../../input/lung-cancer/nodule-detector/'
INPUT_DATASET_LUNGS = '../../input/kaggle-bowl/step4-312/data-centered-rotated-312-212-312.h5'
OUTPUT_DIR = '../../output/lung-cancer/10/'
IMAGE_DIMS = (50,50,50,1)
In [2]:
%matplotlib inline
import numpy as np
import pandas as pd
import h5py
import matplotlib.pyplot as plt
import sklearn
import os
import glob
from modules.logging import logger
import modules.utils as utils
from modules.utils import Timer
import modules.logging
import modules.cnn as cnn
import modules.ctscan as ctscan
In [ ]:
In [ ]:
net = cnn.net_nodule3d_swethasubramanian(IMAGE_DIMS)
model = cnn.prepare_cnn_model(net, OUTPUT_DIR, model_file=INPUT_DIR + 'nodule-classifier.tfl')
In [19]:
utils.mkdirs(OUTPUT_DIR, recreate=True)
modules.logging.setup_file_logger(OUTPUT_DIR + 'out.log')
logger.info('Dir ' + OUTPUT_DIR + ' created')
In [ ]:
with h5py.File(INPUT_DATASET_LUNGS, 'r') as lungs_hdf5:
X = lungs_hdf5['X']
Y = lungs_hdf5['Y']
logger.info('X shape ' + str(X.shape))
logger.info('Y shape ' + str(Y.shape))
nodules_hdf5, x_ds, y_ds = create_xy_datasets(OUTPUT_DIR, 'lung-nodules-tmp', IMAGE_DIMS, 999999)
with hdf5:
#TODO: IDENTIFY NODULES
logger.info("Nodule extraction finished!")
In [ ]:
logger.info('Extraction statistics')
#TODO