model_11
____________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
====================================================================================================
input_1 (InputLayer) (None, 1, 36, 180) 0
____________________________________________________________________________________________________
conv2d_1 (Conv2D) (None, 10, 27, 178) 310
____________________________________________________________________________________________________
conv2d_2 (Conv2D) (None, 512, 6, 1) 922112
____________________________________________________________________________________________________
activation_1 (Activation) (None, 10, 27, 178) 0
____________________________________________________________________________________________________
activation_2 (Activation) (None, 512, 6, 1) 0
____________________________________________________________________________________________________
max_pooling2d_1 (MaxPooling2D) (None, 10, 4, 59) 0
____________________________________________________________________________________________________
max_pooling2d_2 (MaxPooling2D) (None, 512, 3, 1) 0
____________________________________________________________________________________________________
dropout_1 (Dropout) (None, 10, 4, 59) 0
____________________________________________________________________________________________________
dropout_2 (Dropout) (None, 512, 3, 1) 0
____________________________________________________________________________________________________
flatten_1 (Flatten) (None, 2360) 0
____________________________________________________________________________________________________
flatten_2 (Flatten) (None, 1536) 0
____________________________________________________________________________________________________
concatenate_1 (Concatenate) (None, 3896) 0
____________________________________________________________________________________________________
dense_1 (Dense) (None, 256) 997632
____________________________________________________________________________________________________
activation_3 (Activation) (None, 256) 0
____________________________________________________________________________________________________
dropout_3 (Dropout) (None, 256) 0
____________________________________________________________________________________________________
dense_2 (Dense) (None, 49) 12593
====================================================================================================
Total params: 1,932,647.0
Trainable params: 1,932,647.0
Non-trainable params: 0.0
____________________________________________________________________________________________________
Train on 4761 samples, validate on 338 samples
Epoch 1/1000
1s - loss: 0.2146 - val_loss: 0.0540
Epoch 2/1000
1s - loss: 0.0648 - val_loss: 0.0259
Epoch 3/1000
1s - loss: 0.0385 - val_loss: 0.0180
Epoch 4/1000
1s - loss: 0.0276 - val_loss: 0.0143
Epoch 5/1000
1s - loss: 0.0229 - val_loss: 0.0138
Epoch 6/1000
1s - loss: 0.0191 - val_loss: 0.0105
Epoch 7/1000
1s - loss: 0.0168 - val_loss: 0.0100
Epoch 8/1000
1s - loss: 0.0141 - val_loss: 0.0109
Epoch 9/1000
1s - loss: 0.0131 - val_loss: 0.0092
Epoch 10/1000
1s - loss: 0.0117 - val_loss: 0.0092
Epoch 11/1000
1s - loss: 0.0103 - val_loss: 0.0082
Epoch 12/1000
1s - loss: 0.0098 - val_loss: 0.0090
Epoch 13/1000
1s - loss: 0.0093 - val_loss: 0.0100
Epoch 14/1000
1s - loss: 0.0083 - val_loss: 0.0081
Epoch 15/1000
1s - loss: 0.0075 - val_loss: 0.0087
Epoch 16/1000
1s - loss: 0.0076 - val_loss: 0.0075
Epoch 17/1000
1s - loss: 0.0072 - val_loss: 0.0082
Epoch 18/1000
1s - loss: 0.0066 - val_loss: 0.0076
Epoch 19/1000
1s - loss: 0.0059 - val_loss: 0.0082
Epoch 20/1000
1s - loss: 0.0059 - val_loss: 0.0086
Epoch 21/1000
1s - loss: 0.0063 - val_loss: 0.0078
Epoch 22/1000
1s - loss: 0.0055 - val_loss: 0.0078
Epoch 23/1000
1s - loss: 0.0055 - val_loss: 0.0069
Epoch 24/1000
1s - loss: 0.0052 - val_loss: 0.0106
Epoch 25/1000
1s - loss: 0.0050 - val_loss: 0.0093
Epoch 26/1000
1s - loss: 0.0046 - val_loss: 0.0091
Epoch 27/1000
1s - loss: 0.0045 - val_loss: 0.0078
Epoch 28/1000
1s - loss: 0.0041 - val_loss: 0.0094
Epoch 29/1000
1s - loss: 0.0044 - val_loss: 0.0084
Epoch 30/1000
1s - loss: 0.0041 - val_loss: 0.0091
Epoch 31/1000
1s - loss: 0.0046 - val_loss: 0.0084
Epoch 32/1000
1s - loss: 0.0041 - val_loss: 0.0079
Epoch 33/1000
1s - loss: 0.0039 - val_loss: 0.0085
Epoch 34/1000
1s - loss: 0.0034 - val_loss: 0.0088
Epoch 35/1000
1s - loss: 0.0037 - val_loss: 0.0090
Epoch 36/1000
1s - loss: 0.0035 - val_loss: 0.0090
Epoch 37/1000
1s - loss: 0.0034 - val_loss: 0.0090
Epoch 38/1000
1s - loss: 0.0036 - val_loss: 0.0093
Epoch 39/1000
1s - loss: 0.0038 - val_loss: 0.0092
Epoch 40/1000
1s - loss: 0.0033 - val_loss: 0.0089
Epoch 41/1000
1s - loss: 0.0031 - val_loss: 0.0098
Epoch 42/1000
1s - loss: 0.0032 - val_loss: 0.0090
Epoch 43/1000
1s - loss: 0.0034 - val_loss: 0.0089
Epoch 44/1000
1s - loss: 0.0030 - val_loss: 0.0087
Epoch 45/1000
1s - loss: 0.0032 - val_loss: 0.0102
Epoch 46/1000
1s - loss: 0.0031 - val_loss: 0.0091
Epoch 47/1000
1s - loss: 0.0030 - val_loss: 0.0098
Epoch 48/1000
1s - loss: 0.0029 - val_loss: 0.0098
Epoch 49/1000
1s - loss: 0.0029 - val_loss: 0.0104
Epoch 50/1000
1s - loss: 0.0028 - val_loss: 0.0095
Epoch 51/1000
1s - loss: 0.0030 - val_loss: 0.0130
Epoch 52/1000
1s - loss: 0.0029 - val_loss: 0.0112
Epoch 53/1000
1s - loss: 0.0026 - val_loss: 0.0102
Epoch 54/1000
1s - loss: 0.0029 - val_loss: 0.0098
Epoch 55/1000
1s - loss: 0.0022 - val_loss: 0.0093
Epoch 56/1000
1s - loss: 0.0025 - val_loss: 0.0096
Epoch 57/1000
1s - loss: 0.0027 - val_loss: 0.0079
Epoch 58/1000
1s - loss: 0.0027 - val_loss: 0.0092
Epoch 59/1000
1s - loss: 0.0025 - val_loss: 0.0081
Epoch 60/1000
1s - loss: 0.0025 - val_loss: 0.0092
Epoch 61/1000
1s - loss: 0.0021 - val_loss: 0.0111
Epoch 62/1000
1s - loss: 0.0023 - val_loss: 0.0106
Epoch 63/1000
1s - loss: 0.0023 - val_loss: 0.0100
Epoch 64/1000
1s - loss: 0.0020 - val_loss: 0.0135
Epoch 65/1000
1s - loss: 0.0023 - val_loss: 0.0111
Epoch 66/1000
1s - loss: 0.0024 - val_loss: 0.0136
Epoch 67/1000
1s - loss: 0.0024 - val_loss: 0.0095
Epoch 68/1000
1s - loss: 0.0023 - val_loss: 0.0124
Epoch 69/1000
1s - loss: 0.0021 - val_loss: 0.0111
Epoch 70/1000
1s - loss: 0.0021 - val_loss: 0.0130
Epoch 71/1000
1s - loss: 0.0020 - val_loss: 0.0132
Epoch 72/1000
1s - loss: 0.0020 - val_loss: 0.0128
Epoch 73/1000
1s - loss: 0.0020 - val_loss: 0.0142
Epoch 74/1000
1s - loss: 0.0022 - val_loss: 0.0127
Epoch 75/1000
1s - loss: 0.0021 - val_loss: 0.0126
Epoch 76/1000
1s - loss: 0.0022 - val_loss: 0.0113
Epoch 77/1000
1s - loss: 0.0019 - val_loss: 0.0117
Epoch 78/1000
1s - loss: 0.0019 - val_loss: 0.0119
Epoch 79/1000
1s - loss: 0.0020 - val_loss: 0.0120
Epoch 80/1000
1s - loss: 0.0021 - val_loss: 0.0111
Epoch 81/1000
1s - loss: 0.0021 - val_loss: 0.0131
Epoch 82/1000
1s - loss: 0.0020 - val_loss: 0.0109
Epoch 83/1000
1s - loss: 0.0021 - val_loss: 0.0110
Epoch 84/1000
1s - loss: 0.0021 - val_loss: 0.0157
Accuracy: 0.9349
precision recall f1-score support
40 1.000 1.000 1.000 13
41 1.000 1.000 1.000 3
42 1.000 1.000 1.000 1
43 0.714 1.000 0.833 5
44 1.000 1.000 1.000 2
45 1.000 1.000 1.000 21
46 1.000 1.000 1.000 3
47 1.000 1.000 1.000 17
48 1.000 1.000 1.000 41
49 1.000 1.000 1.000 8
50 1.000 1.000 1.000 29
51 1.000 1.000 1.000 3
52 1.000 1.000 1.000 38
53 1.000 1.000 1.000 11
54 1.000 0.867 0.929 15
55 0.971 0.971 0.971 35
56 1.000 1.000 1.000 22
57 0.933 0.966 0.949 29
58 1.000 0.750 0.857 4
59 1.000 0.918 0.957 49
60 1.000 0.926 0.962 27
61 1.000 0.885 0.939 26
62 0.840 0.875 0.857 24
63 1.000 1.000 1.000 3
64 1.000 0.944 0.971 36
65 1.000 1.000 1.000 6
66 1.000 1.000 1.000 4
67 0.600 0.500 0.545 6
68 1.000 1.000 1.000 2
69 1.000 1.000 1.000 15
70 0.500 1.000 0.667 1
71 1.000 0.500 0.667 2
72 1.000 1.000 1.000 1
73 0.000 0.000 0.000 1
74 1.000 1.000 1.000 4
75 1.000 1.000 1.000 2
76 1.000 1.000 1.000 1
77 0.000 0.000 0.000 0
78 0.000 0.000 0.000 0
79 1.000 1.000 1.000 1
80 0.000 0.000 0.000 0
81 0.000 0.000 0.000 0
82 0.000 0.000 0.000 0
83 1.000 1.000 1.000 1
84 0.000 0.000 0.000 0
85 0.000 0.000 0.000 0
86 0.000 0.000 0.000 0
87 0.000 0.000 0.000 0
88 1.000 1.000 1.000 1
avg / total 0.976 0.953 0.963 513
D:\ProgramFiles\Anaconda3_64\lib\site-packages\sklearn\metrics\classification.py:1113: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples.
'precision', 'predicted', average, warn_for)
D:\ProgramFiles\Anaconda3_64\lib\site-packages\sklearn\metrics\classification.py:1115: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples.
'recall', 'true', average, warn_for)
____________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
====================================================================================================
input_2 (InputLayer) (None, 1, 36, 180) 0
____________________________________________________________________________________________________
conv2d_3 (Conv2D) (None, 10, 27, 178) 310
____________________________________________________________________________________________________
conv2d_4 (Conv2D) (None, 512, 6, 1) 922112
____________________________________________________________________________________________________
activation_4 (Activation) (None, 10, 27, 178) 0
____________________________________________________________________________________________________
activation_5 (Activation) (None, 512, 6, 1) 0
____________________________________________________________________________________________________
max_pooling2d_3 (MaxPooling2D) (None, 10, 4, 59) 0
____________________________________________________________________________________________________
max_pooling2d_4 (MaxPooling2D) (None, 512, 3, 1) 0
____________________________________________________________________________________________________
dropout_4 (Dropout) (None, 10, 4, 59) 0
____________________________________________________________________________________________________
dropout_5 (Dropout) (None, 512, 3, 1) 0
____________________________________________________________________________________________________
flatten_3 (Flatten) (None, 2360) 0
____________________________________________________________________________________________________
flatten_4 (Flatten) (None, 1536) 0
____________________________________________________________________________________________________
concatenate_2 (Concatenate) (None, 3896) 0
____________________________________________________________________________________________________
dense_3 (Dense) (None, 256) 997632
____________________________________________________________________________________________________
activation_6 (Activation) (None, 256) 0
____________________________________________________________________________________________________
dropout_6 (Dropout) (None, 256) 0
____________________________________________________________________________________________________
dense_4 (Dense) (None, 49) 12593
====================================================================================================
Total params: 1,932,647.0
Trainable params: 1,932,647.0
Non-trainable params: 0.0
____________________________________________________________________________________________________
Train on 4803 samples, validate on 296 samples
Epoch 1/1000
1s - loss: 0.2273 - val_loss: 0.0494
Epoch 2/1000
1s - loss: 0.0672 - val_loss: 0.0255
Epoch 3/1000
1s - loss: 0.0388 - val_loss: 0.0192
Epoch 4/1000
1s - loss: 0.0278 - val_loss: 0.0142
Epoch 5/1000
1s - loss: 0.0223 - val_loss: 0.0136
Epoch 6/1000
1s - loss: 0.0185 - val_loss: 0.0134
Epoch 7/1000
1s - loss: 0.0155 - val_loss: 0.0098
Epoch 8/1000
1s - loss: 0.0138 - val_loss: 0.0100
Epoch 9/1000
1s - loss: 0.0131 - val_loss: 0.0104
Epoch 10/1000
1s - loss: 0.0114 - val_loss: 0.0100
Epoch 11/1000
1s - loss: 0.0104 - val_loss: 0.0106
Epoch 12/1000
1s - loss: 0.0093 - val_loss: 0.0086
Epoch 13/1000
1s - loss: 0.0088 - val_loss: 0.0097
Epoch 14/1000
1s - loss: 0.0078 - val_loss: 0.0081
Epoch 15/1000
1s - loss: 0.0077 - val_loss: 0.0096
Epoch 16/1000
1s - loss: 0.0069 - val_loss: 0.0074
Epoch 17/1000
1s - loss: 0.0074 - val_loss: 0.0088
Epoch 18/1000
1s - loss: 0.0065 - val_loss: 0.0102
Epoch 19/1000
1s - loss: 0.0060 - val_loss: 0.0088
Epoch 20/1000
1s - loss: 0.0054 - val_loss: 0.0096
Epoch 21/1000
1s - loss: 0.0052 - val_loss: 0.0102
Epoch 22/1000
1s - loss: 0.0051 - val_loss: 0.0085
Epoch 23/1000
1s - loss: 0.0049 - val_loss: 0.0100
Epoch 24/1000
1s - loss: 0.0048 - val_loss: 0.0105
Epoch 25/1000
1s - loss: 0.0046 - val_loss: 0.0106
Epoch 26/1000
1s - loss: 0.0043 - val_loss: 0.0100
Epoch 27/1000
1s - loss: 0.0044 - val_loss: 0.0090
Epoch 28/1000
1s - loss: 0.0043 - val_loss: 0.0098
Epoch 29/1000
1s - loss: 0.0042 - val_loss: 0.0119
Epoch 30/1000
1s - loss: 0.0036 - val_loss: 0.0094
Epoch 31/1000
1s - loss: 0.0038 - val_loss: 0.0087
Epoch 32/1000
1s - loss: 0.0037 - val_loss: 0.0098
Epoch 33/1000
1s - loss: 0.0035 - val_loss: 0.0114
Epoch 34/1000
1s - loss: 0.0035 - val_loss: 0.0091
Epoch 35/1000
1s - loss: 0.0035 - val_loss: 0.0074
Epoch 36/1000
1s - loss: 0.0033 - val_loss: 0.0079
Epoch 37/1000
1s - loss: 0.0032 - val_loss: 0.0099
Epoch 38/1000
1s - loss: 0.0030 - val_loss: 0.0139
Epoch 39/1000
1s - loss: 0.0036 - val_loss: 0.0128
Epoch 40/1000
1s - loss: 0.0032 - val_loss: 0.0108
Epoch 41/1000
1s - loss: 0.0030 - val_loss: 0.0093
Epoch 42/1000
1s - loss: 0.0031 - val_loss: 0.0109
Epoch 43/1000
1s - loss: 0.0031 - val_loss: 0.0124
Epoch 44/1000
1s - loss: 0.0030 - val_loss: 0.0102
Epoch 45/1000
1s - loss: 0.0026 - val_loss: 0.0098
Epoch 46/1000
1s - loss: 0.0027 - val_loss: 0.0107
Epoch 47/1000
1s - loss: 0.0025 - val_loss: 0.0112
Epoch 48/1000
1s - loss: 0.0026 - val_loss: 0.0110
Epoch 49/1000
1s - loss: 0.0026 - val_loss: 0.0123
Epoch 50/1000
1s - loss: 0.0026 - val_loss: 0.0103
Epoch 51/1000
1s - loss: 0.0023 - val_loss: 0.0098
Epoch 52/1000
1s - loss: 0.0022 - val_loss: 0.0117
Epoch 53/1000
1s - loss: 0.0024 - val_loss: 0.0137
Epoch 54/1000
1s - loss: 0.0025 - val_loss: 0.0133
Epoch 55/1000
1s - loss: 0.0022 - val_loss: 0.0132
Epoch 56/1000
1s - loss: 0.0023 - val_loss: 0.0140
Epoch 57/1000
1s - loss: 0.0024 - val_loss: 0.0112
Epoch 58/1000
1s - loss: 0.0024 - val_loss: 0.0111
Epoch 59/1000
1s - loss: 0.0026 - val_loss: 0.0113
Accuracy: 0.9595
precision recall f1-score support
40 0.000 0.000 0.000 0
41 0.000 0.000 0.000 0
42 1.000 1.000 1.000 1
43 0.000 0.000 0.000 0
44 1.000 1.000 1.000 2
45 1.000 1.000 1.000 8
46 0.000 0.000 0.000 0
47 1.000 1.000 1.000 4
48 1.000 1.000 1.000 18
49 1.000 1.000 1.000 7
50 1.000 1.000 1.000 14
51 1.000 0.667 0.800 3
52 1.000 1.000 1.000 14
53 0.889 1.000 0.941 8
54 1.000 1.000 1.000 17
55 1.000 1.000 1.000 11
56 1.000 0.938 0.968 16
57 1.000 1.000 1.000 16
58 1.000 1.000 1.000 1
59 1.000 1.000 1.000 24
60 0.917 0.917 0.917 12
61 1.000 1.000 1.000 20
62 1.000 1.000 1.000 21
63 1.000 0.600 0.750 5
64 0.963 0.963 0.963 27
65 0.889 0.889 0.889 9
66 1.000 0.900 0.947 10
67 1.000 0.917 0.957 12
68 1.000 0.500 0.667 6
69 0.958 0.958 0.958 24
70 1.000 0.800 0.889 5
71 1.000 0.667 0.800 3
72 1.000 0.667 0.800 9
73 1.000 0.667 0.800 3
74 1.000 0.875 0.933 8
75 1.000 1.000 1.000 1
76 1.000 1.000 1.000 3
77 1.000 1.000 1.000 1
78 1.000 1.000 1.000 2
79 1.000 1.000 1.000 2
80 0.000 0.000 0.000 0
81 0.000 0.000 0.000 0
82 0.000 0.000 0.000 0
83 1.000 1.000 1.000 2
84 0.000 0.000 0.000 0
85 0.000 0.000 0.000 0
86 0.000 0.000 0.000 0
87 0.000 0.000 0.000 0
88 1.000 1.000 1.000 1
avg / total 0.986 0.943 0.960 350
D:\ProgramFiles\Anaconda3_64\lib\site-packages\sklearn\metrics\classification.py:1113: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples.
'precision', 'predicted', average, warn_for)
D:\ProgramFiles\Anaconda3_64\lib\site-packages\sklearn\metrics\classification.py:1115: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples.
'recall', 'true', average, warn_for)
____________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
====================================================================================================
input_3 (InputLayer) (None, 1, 36, 180) 0
____________________________________________________________________________________________________
conv2d_5 (Conv2D) (None, 10, 27, 178) 310
____________________________________________________________________________________________________
conv2d_6 (Conv2D) (None, 512, 6, 1) 922112
____________________________________________________________________________________________________
activation_7 (Activation) (None, 10, 27, 178) 0
____________________________________________________________________________________________________
activation_8 (Activation) (None, 512, 6, 1) 0
____________________________________________________________________________________________________
max_pooling2d_5 (MaxPooling2D) (None, 10, 4, 59) 0
____________________________________________________________________________________________________
max_pooling2d_6 (MaxPooling2D) (None, 512, 3, 1) 0
____________________________________________________________________________________________________
dropout_7 (Dropout) (None, 10, 4, 59) 0
____________________________________________________________________________________________________
dropout_8 (Dropout) (None, 512, 3, 1) 0
____________________________________________________________________________________________________
flatten_5 (Flatten) (None, 2360) 0
____________________________________________________________________________________________________
flatten_6 (Flatten) (None, 1536) 0
____________________________________________________________________________________________________
concatenate_3 (Concatenate) (None, 3896) 0
____________________________________________________________________________________________________
dense_5 (Dense) (None, 256) 997632
____________________________________________________________________________________________________
activation_9 (Activation) (None, 256) 0
____________________________________________________________________________________________________
dropout_9 (Dropout) (None, 256) 0
____________________________________________________________________________________________________
dense_6 (Dense) (None, 49) 12593
====================================================================================================
Total params: 1,932,647.0
Trainable params: 1,932,647.0
Non-trainable params: 0.0
____________________________________________________________________________________________________
Train on 4767 samples, validate on 332 samples
Epoch 1/1000
1s - loss: 0.2185 - val_loss: 0.0463
Epoch 2/1000
1s - loss: 0.0676 - val_loss: 0.0218
Epoch 3/1000
1s - loss: 0.0382 - val_loss: 0.0141
Epoch 4/1000
1s - loss: 0.0283 - val_loss: 0.0106
Epoch 5/1000
1s - loss: 0.0220 - val_loss: 0.0083
Epoch 6/1000
1s - loss: 0.0186 - val_loss: 0.0085
Epoch 7/1000
1s - loss: 0.0151 - val_loss: 0.0082
Epoch 8/1000
1s - loss: 0.0135 - val_loss: 0.0070
Epoch 9/1000
1s - loss: 0.0122 - val_loss: 0.0064
Epoch 10/1000
1s - loss: 0.0109 - val_loss: 0.0073
Epoch 11/1000
1s - loss: 0.0102 - val_loss: 0.0067
Epoch 12/1000
1s - loss: 0.0090 - val_loss: 0.0068
Epoch 13/1000
1s - loss: 0.0089 - val_loss: 0.0071
Epoch 14/1000
1s - loss: 0.0080 - val_loss: 0.0059
Epoch 15/1000
1s - loss: 0.0075 - val_loss: 0.0055
Epoch 16/1000
1s - loss: 0.0072 - val_loss: 0.0070
Epoch 17/1000
1s - loss: 0.0069 - val_loss: 0.0056
Epoch 18/1000
1s - loss: 0.0060 - val_loss: 0.0076
Epoch 19/1000
1s - loss: 0.0058 - val_loss: 0.0087
Epoch 20/1000
1s - loss: 0.0054 - val_loss: 0.0061
Epoch 21/1000
1s - loss: 0.0053 - val_loss: 0.0056
Epoch 22/1000
1s - loss: 0.0047 - val_loss: 0.0066
Epoch 23/1000
1s - loss: 0.0046 - val_loss: 0.0073
Epoch 24/1000
1s - loss: 0.0047 - val_loss: 0.0061
Epoch 25/1000
1s - loss: 0.0046 - val_loss: 0.0070
Epoch 26/1000
1s - loss: 0.0046 - val_loss: 0.0068
Epoch 27/1000
1s - loss: 0.0043 - val_loss: 0.0064
Epoch 28/1000
1s - loss: 0.0039 - val_loss: 0.0062
Epoch 29/1000
1s - loss: 0.0040 - val_loss: 0.0069
Epoch 30/1000
1s - loss: 0.0037 - val_loss: 0.0083
Epoch 31/1000
1s - loss: 0.0037 - val_loss: 0.0071
Epoch 32/1000
1s - loss: 0.0038 - val_loss: 0.0072
Epoch 33/1000
1s - loss: 0.0034 - val_loss: 0.0078
Epoch 34/1000
1s - loss: 0.0036 - val_loss: 0.0070
Epoch 35/1000
1s - loss: 0.0033 - val_loss: 0.0057
Epoch 36/1000
1s - loss: 0.0034 - val_loss: 0.0077
Epoch 37/1000
1s - loss: 0.0032 - val_loss: 0.0068
Epoch 38/1000
1s - loss: 0.0031 - val_loss: 0.0085
Epoch 39/1000
1s - loss: 0.0032 - val_loss: 0.0078
Epoch 40/1000
1s - loss: 0.0032 - val_loss: 0.0086
Epoch 41/1000
1s - loss: 0.0029 - val_loss: 0.0072
Epoch 42/1000
1s - loss: 0.0030 - val_loss: 0.0080
Epoch 43/1000
1s - loss: 0.0029 - val_loss: 0.0075
Epoch 44/1000
1s - loss: 0.0029 - val_loss: 0.0086
Epoch 45/1000
1s - loss: 0.0029 - val_loss: 0.0080
Epoch 46/1000
1s - loss: 0.0027 - val_loss: 0.0079
Epoch 47/1000
1s - loss: 0.0028 - val_loss: 0.0086
Epoch 48/1000
1s - loss: 0.0030 - val_loss: 0.0068
Epoch 49/1000
1s - loss: 0.0027 - val_loss: 0.0077
Epoch 50/1000
1s - loss: 0.0028 - val_loss: 0.0079
Epoch 51/1000
1s - loss: 0.0027 - val_loss: 0.0091
Epoch 52/1000
1s - loss: 0.0025 - val_loss: 0.0075
Epoch 53/1000
1s - loss: 0.0025 - val_loss: 0.0070
Epoch 54/1000
1s - loss: 0.0021 - val_loss: 0.0084
Epoch 55/1000
1s - loss: 0.0022 - val_loss: 0.0068
Epoch 56/1000
1s - loss: 0.0018 - val_loss: 0.0075
Epoch 57/1000
1s - loss: 0.0022 - val_loss: 0.0067
Epoch 58/1000
1s - loss: 0.0022 - val_loss: 0.0093
Epoch 59/1000
1s - loss: 0.0021 - val_loss: 0.0075
Epoch 60/1000
1s - loss: 0.0019 - val_loss: 0.0075
Epoch 61/1000
1s - loss: 0.0021 - val_loss: 0.0071
Epoch 62/1000
1s - loss: 0.0018 - val_loss: 0.0084
Epoch 63/1000
1s - loss: 0.0019 - val_loss: 0.0071
Accuracy: 0.9578
precision recall f1-score support
40 1.000 1.000 1.000 6
41 1.000 1.000 1.000 2
42 0.000 0.000 0.000 0
43 1.000 1.000 1.000 3
44 0.000 0.000 0.000 0
45 1.000 1.000 1.000 17
46 1.000 1.000 1.000 1
47 1.000 1.000 1.000 7
48 0.939 1.000 0.969 31
49 1.000 1.000 1.000 8
50 1.000 1.000 1.000 27
51 1.000 1.000 1.000 2
52 1.000 1.000 1.000 25
53 1.000 1.000 1.000 10
54 1.000 1.000 1.000 19
55 0.842 1.000 0.914 16
56 1.000 1.000 1.000 16
57 1.000 0.952 0.976 21
58 1.000 1.000 1.000 1
59 0.967 1.000 0.983 29
60 0.885 1.000 0.939 23
61 1.000 1.000 1.000 21
62 1.000 1.000 1.000 26
63 0.500 1.000 0.667 2
64 0.960 0.960 0.960 25
65 1.000 0.800 0.889 10
66 1.000 1.000 1.000 5
67 0.824 1.000 0.903 14
68 1.000 0.667 0.800 3
69 1.000 0.909 0.952 22
70 0.000 0.000 0.000 0
71 1.000 1.000 1.000 1
72 0.875 1.000 0.933 7
73 0.500 1.000 0.667 1
74 0.857 1.000 0.923 6
75 0.000 0.000 0.000 0
76 1.000 1.000 1.000 2
77 0.000 0.000 0.000 0
78 0.000 0.000 0.000 0
79 0.000 0.000 0.000 0
80 0.000 0.000 0.000 0
81 0.000 0.000 0.000 0
82 0.000 0.000 0.000 0
83 0.000 0.000 0.000 0
84 0.000 0.000 0.000 0
85 0.000 0.000 0.000 0
86 0.000 0.000 0.000 0
87 0.000 0.000 0.000 0
88 0.000 0.000 0.000 0
avg / total 0.964 0.983 0.971 409
____________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
====================================================================================================
input_4 (InputLayer) (None, 1, 36, 180) 0
____________________________________________________________________________________________________
conv2d_7 (Conv2D) (None, 10, 27, 178) 310
____________________________________________________________________________________________________
conv2d_8 (Conv2D) (None, 512, 6, 1) 922112
____________________________________________________________________________________________________
activation_10 (Activation) (None, 10, 27, 178) 0
____________________________________________________________________________________________________
activation_11 (Activation) (None, 512, 6, 1) 0
____________________________________________________________________________________________________
max_pooling2d_7 (MaxPooling2D) (None, 10, 4, 59) 0
____________________________________________________________________________________________________
max_pooling2d_8 (MaxPooling2D) (None, 512, 3, 1) 0
____________________________________________________________________________________________________
dropout_10 (Dropout) (None, 10, 4, 59) 0
____________________________________________________________________________________________________
dropout_11 (Dropout) (None, 512, 3, 1) 0
____________________________________________________________________________________________________
flatten_7 (Flatten) (None, 2360) 0
____________________________________________________________________________________________________
flatten_8 (Flatten) (None, 1536) 0
____________________________________________________________________________________________________
concatenate_4 (Concatenate) (None, 3896) 0
____________________________________________________________________________________________________
dense_7 (Dense) (None, 256) 997632
____________________________________________________________________________________________________
activation_12 (Activation) (None, 256) 0
____________________________________________________________________________________________________
dropout_12 (Dropout) (None, 256) 0
____________________________________________________________________________________________________
dense_8 (Dense) (None, 49) 12593
====================================================================================================
Total params: 1,932,647.0
Trainable params: 1,932,647.0
Non-trainable params: 0.0
____________________________________________________________________________________________________
Train on 4737 samples, validate on 362 samples
Epoch 1/1000
1s - loss: 0.2227 - val_loss: 0.0609
Epoch 2/1000
1s - loss: 0.0644 - val_loss: 0.0289
Epoch 3/1000
1s - loss: 0.0381 - val_loss: 0.0176
Epoch 4/1000
1s - loss: 0.0274 - val_loss: 0.0143
Epoch 5/1000
1s - loss: 0.0216 - val_loss: 0.0138
Epoch 6/1000
1s - loss: 0.0182 - val_loss: 0.0105
Epoch 7/1000
1s - loss: 0.0156 - val_loss: 0.0111
Epoch 8/1000
1s - loss: 0.0135 - val_loss: 0.0094
Epoch 9/1000
1s - loss: 0.0120 - val_loss: 0.0099
Epoch 10/1000
1s - loss: 0.0111 - val_loss: 0.0089
Epoch 11/1000
1s - loss: 0.0099 - val_loss: 0.0089
Epoch 12/1000
1s - loss: 0.0089 - val_loss: 0.0086
Epoch 13/1000
1s - loss: 0.0082 - val_loss: 0.0084
Epoch 14/1000
1s - loss: 0.0079 - val_loss: 0.0083
Epoch 15/1000
1s - loss: 0.0073 - val_loss: 0.0101
Epoch 16/1000
1s - loss: 0.0070 - val_loss: 0.0089
Epoch 17/1000
1s - loss: 0.0068 - val_loss: 0.0087
Epoch 18/1000
1s - loss: 0.0065 - val_loss: 0.0083
Epoch 19/1000
1s - loss: 0.0058 - val_loss: 0.0091
Epoch 20/1000
1s - loss: 0.0058 - val_loss: 0.0087
Epoch 21/1000
1s - loss: 0.0055 - val_loss: 0.0077
Epoch 22/1000
1s - loss: 0.0054 - val_loss: 0.0082
Epoch 23/1000
1s - loss: 0.0049 - val_loss: 0.0089
Epoch 24/1000
1s - loss: 0.0047 - val_loss: 0.0080
Epoch 25/1000
1s - loss: 0.0049 - val_loss: 0.0096
Epoch 26/1000
1s - loss: 0.0047 - val_loss: 0.0081
Epoch 27/1000
1s - loss: 0.0043 - val_loss: 0.0077
Epoch 28/1000
1s - loss: 0.0042 - val_loss: 0.0087
Epoch 29/1000
1s - loss: 0.0042 - val_loss: 0.0079
Epoch 30/1000
1s - loss: 0.0039 - val_loss: 0.0074
Epoch 31/1000
1s - loss: 0.0037 - val_loss: 0.0076
Epoch 32/1000
1s - loss: 0.0038 - val_loss: 0.0080
Epoch 33/1000
1s - loss: 0.0037 - val_loss: 0.0085
Epoch 34/1000
1s - loss: 0.0035 - val_loss: 0.0082
Epoch 35/1000
1s - loss: 0.0036 - val_loss: 0.0086
Epoch 36/1000
1s - loss: 0.0036 - val_loss: 0.0089
Epoch 37/1000
1s - loss: 0.0031 - val_loss: 0.0073
Epoch 38/1000
1s - loss: 0.0033 - val_loss: 0.0088
Epoch 39/1000
1s - loss: 0.0035 - val_loss: 0.0082
Epoch 40/1000
1s - loss: 0.0032 - val_loss: 0.0082
Epoch 41/1000
1s - loss: 0.0034 - val_loss: 0.0089
Epoch 42/1000
1s - loss: 0.0031 - val_loss: 0.0078
Epoch 43/1000
1s - loss: 0.0034 - val_loss: 0.0092
Epoch 44/1000
1s - loss: 0.0030 - val_loss: 0.0096
Epoch 45/1000
1s - loss: 0.0029 - val_loss: 0.0088
Epoch 46/1000
1s - loss: 0.0029 - val_loss: 0.0096
Epoch 47/1000
1s - loss: 0.0030 - val_loss: 0.0086
Epoch 48/1000
1s - loss: 0.0028 - val_loss: 0.0087
Epoch 49/1000
1s - loss: 0.0029 - val_loss: 0.0087
Epoch 50/1000
1s - loss: 0.0026 - val_loss: 0.0087
Epoch 51/1000
1s - loss: 0.0025 - val_loss: 0.0087
Epoch 52/1000
1s - loss: 0.0026 - val_loss: 0.0103
Epoch 53/1000
1s - loss: 0.0025 - val_loss: 0.0107
Epoch 54/1000
1s - loss: 0.0027 - val_loss: 0.0102
Epoch 55/1000
1s - loss: 0.0026 - val_loss: 0.0081
Epoch 56/1000
1s - loss: 0.0024 - val_loss: 0.0086
Epoch 57/1000
1s - loss: 0.0024 - val_loss: 0.0071
Epoch 58/1000
1s - loss: 0.0027 - val_loss: 0.0087
Epoch 59/1000
1s - loss: 0.0025 - val_loss: 0.0100
Epoch 60/1000
1s - loss: 0.0026 - val_loss: 0.0101
Epoch 61/1000
1s - loss: 0.0024 - val_loss: 0.0099
Epoch 62/1000
1s - loss: 0.0025 - val_loss: 0.0090
Epoch 63/1000
1s - loss: 0.0021 - val_loss: 0.0100
Epoch 64/1000
1s - loss: 0.0021 - val_loss: 0.0093
Epoch 65/1000
1s - loss: 0.0021 - val_loss: 0.0093
Epoch 66/1000
1s - loss: 0.0022 - val_loss: 0.0101
Epoch 67/1000
1s - loss: 0.0022 - val_loss: 0.0090
Epoch 68/1000
1s - loss: 0.0019 - val_loss: 0.0082
Epoch 69/1000
1s - loss: 0.0021 - val_loss: 0.0089
Epoch 70/1000
1s - loss: 0.0022 - val_loss: 0.0083
Epoch 71/1000
1s - loss: 0.0020 - val_loss: 0.0090
Epoch 72/1000
1s - loss: 0.0024 - val_loss: 0.0107
Epoch 73/1000
1s - loss: 0.0027 - val_loss: 0.0088
Epoch 74/1000
1s - loss: 0.0021 - val_loss: 0.0088
Epoch 75/1000
1s - loss: 0.0023 - val_loss: 0.0081
Accuracy: 0.9475
precision recall f1-score support
40 1.000 1.000 1.000 8
41 1.000 1.000 1.000 3
42 1.000 1.000 1.000 1
43 1.000 1.000 1.000 8
44 1.000 1.000 1.000 2
45 1.000 1.000 1.000 16
46 1.000 1.000 1.000 2
47 1.000 1.000 1.000 12
48 1.000 1.000 1.000 27
49 1.000 1.000 1.000 5
50 1.000 1.000 1.000 32
51 0.857 1.000 0.923 6
52 1.000 1.000 1.000 37
53 1.000 1.000 1.000 6
54 0.958 1.000 0.979 23
55 0.926 1.000 0.962 25
56 1.000 1.000 1.000 20
57 1.000 0.943 0.971 35
58 0.900 1.000 0.947 9
59 0.955 1.000 0.977 42
60 1.000 0.944 0.971 18
61 0.903 1.000 0.949 28
62 0.921 0.921 0.921 38
63 0.800 1.000 0.889 4
64 0.970 1.000 0.985 32
65 1.000 1.000 1.000 8
66 0.882 1.000 0.938 15
67 0.938 1.000 0.968 15
68 1.000 1.000 1.000 3
69 1.000 0.952 0.976 21
70 0.800 0.800 0.800 5
71 1.000 1.000 1.000 4
72 1.000 1.000 1.000 2
73 0.800 1.000 0.889 4
74 0.889 1.000 0.941 8
75 1.000 1.000 1.000 2
76 0.000 0.000 0.000 0
77 0.000 0.000 0.000 0
78 0.000 0.000 0.000 0
79 0.000 0.000 0.000 0
80 0.000 0.000 0.000 0
81 0.000 0.000 0.000 0
82 0.000 0.000 0.000 0
83 0.000 0.000 0.000 0
84 0.000 0.000 0.000 0
85 0.000 0.000 0.000 0
86 0.000 0.000 0.000 0
87 0.000 0.000 0.000 0
88 0.000 0.000 0.000 0
avg / total 0.963 0.985 0.973 526
____________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
====================================================================================================
input_5 (InputLayer) (None, 1, 36, 180) 0
____________________________________________________________________________________________________
conv2d_9 (Conv2D) (None, 10, 27, 178) 310
____________________________________________________________________________________________________
conv2d_10 (Conv2D) (None, 512, 6, 1) 922112
____________________________________________________________________________________________________
activation_13 (Activation) (None, 10, 27, 178) 0
____________________________________________________________________________________________________
activation_14 (Activation) (None, 512, 6, 1) 0
____________________________________________________________________________________________________
max_pooling2d_9 (MaxPooling2D) (None, 10, 4, 59) 0
____________________________________________________________________________________________________
max_pooling2d_10 (MaxPooling2D) (None, 512, 3, 1) 0
____________________________________________________________________________________________________
dropout_13 (Dropout) (None, 10, 4, 59) 0
____________________________________________________________________________________________________
dropout_14 (Dropout) (None, 512, 3, 1) 0
____________________________________________________________________________________________________
flatten_9 (Flatten) (None, 2360) 0
____________________________________________________________________________________________________
flatten_10 (Flatten) (None, 1536) 0
____________________________________________________________________________________________________
concatenate_5 (Concatenate) (None, 3896) 0
____________________________________________________________________________________________________
dense_9 (Dense) (None, 256) 997632
____________________________________________________________________________________________________
activation_15 (Activation) (None, 256) 0
____________________________________________________________________________________________________
dropout_15 (Dropout) (None, 256) 0
____________________________________________________________________________________________________
dense_10 (Dense) (None, 49) 12593
====================================================================================================
Total params: 1,932,647.0
Trainable params: 1,932,647.0
Non-trainable params: 0.0
____________________________________________________________________________________________________
Train on 4603 samples, validate on 496 samples
Epoch 1/1000
1s - loss: 0.2264 - val_loss: 0.0620
Epoch 2/1000
1s - loss: 0.0674 - val_loss: 0.0390
Epoch 3/1000
1s - loss: 0.0385 - val_loss: 0.0303
Epoch 4/1000
1s - loss: 0.0283 - val_loss: 0.0259
Epoch 5/1000
1s - loss: 0.0229 - val_loss: 0.0238
Epoch 6/1000
1s - loss: 0.0185 - val_loss: 0.0234
Epoch 7/1000
1s - loss: 0.0164 - val_loss: 0.0201
Epoch 8/1000
1s - loss: 0.0144 - val_loss: 0.0185
Epoch 9/1000
1s - loss: 0.0134 - val_loss: 0.0194
Epoch 10/1000
1s - loss: 0.0118 - val_loss: 0.0173
Epoch 11/1000
1s - loss: 0.0110 - val_loss: 0.0163
Epoch 12/1000
1s - loss: 0.0100 - val_loss: 0.0163
Epoch 13/1000
1s - loss: 0.0089 - val_loss: 0.0161
Epoch 14/1000
1s - loss: 0.0087 - val_loss: 0.0162
Epoch 15/1000
1s - loss: 0.0081 - val_loss: 0.0178
Epoch 16/1000
1s - loss: 0.0077 - val_loss: 0.0166
Epoch 17/1000
1s - loss: 0.0066 - val_loss: 0.0161
Epoch 18/1000
1s - loss: 0.0072 - val_loss: 0.0174
Epoch 19/1000
1s - loss: 0.0065 - val_loss: 0.0147
Epoch 20/1000
1s - loss: 0.0060 - val_loss: 0.0181
Epoch 21/1000
1s - loss: 0.0057 - val_loss: 0.0153
Epoch 22/1000
1s - loss: 0.0054 - val_loss: 0.0139
Epoch 23/1000
1s - loss: 0.0050 - val_loss: 0.0162
Epoch 24/1000
1s - loss: 0.0050 - val_loss: 0.0145
Epoch 25/1000
1s - loss: 0.0049 - val_loss: 0.0147
Epoch 26/1000
1s - loss: 0.0048 - val_loss: 0.0135
Epoch 27/1000
1s - loss: 0.0049 - val_loss: 0.0148
Epoch 28/1000
1s - loss: 0.0045 - val_loss: 0.0158
Epoch 29/1000
1s - loss: 0.0042 - val_loss: 0.0146
Epoch 30/1000
1s - loss: 0.0042 - val_loss: 0.0171
Epoch 31/1000
1s - loss: 0.0038 - val_loss: 0.0145
Epoch 32/1000
1s - loss: 0.0039 - val_loss: 0.0154
Epoch 33/1000
1s - loss: 0.0034 - val_loss: 0.0160
Epoch 34/1000
1s - loss: 0.0035 - val_loss: 0.0152
Epoch 35/1000
1s - loss: 0.0035 - val_loss: 0.0139
Epoch 36/1000
1s - loss: 0.0038 - val_loss: 0.0160
Epoch 37/1000
1s - loss: 0.0035 - val_loss: 0.0166
Epoch 38/1000
1s - loss: 0.0032 - val_loss: 0.0140
Epoch 39/1000
1s - loss: 0.0033 - val_loss: 0.0157
Epoch 40/1000
1s - loss: 0.0038 - val_loss: 0.0190
Epoch 41/1000
1s - loss: 0.0031 - val_loss: 0.0164
Epoch 42/1000
1s - loss: 0.0032 - val_loss: 0.0170
Epoch 43/1000
1s - loss: 0.0031 - val_loss: 0.0174
Epoch 44/1000
1s - loss: 0.0032 - val_loss: 0.0164
Epoch 45/1000
1s - loss: 0.0029 - val_loss: 0.0162
Epoch 46/1000
1s - loss: 0.0032 - val_loss: 0.0162
Epoch 47/1000
1s - loss: 0.0028 - val_loss: 0.0162
Epoch 48/1000
1s - loss: 0.0024 - val_loss: 0.0173
Epoch 49/1000
1s - loss: 0.0026 - val_loss: 0.0165
Epoch 50/1000
1s - loss: 0.0027 - val_loss: 0.0195
Epoch 51/1000
1s - loss: 0.0026 - val_loss: 0.0163
Epoch 52/1000
1s - loss: 0.0026 - val_loss: 0.0199
Epoch 53/1000
1s - loss: 0.0028 - val_loss: 0.0160
Epoch 54/1000
1s - loss: 0.0022 - val_loss: 0.0155
Epoch 55/1000
1s - loss: 0.0027 - val_loss: 0.0183
Epoch 56/1000
1s - loss: 0.0025 - val_loss: 0.0158
Epoch 57/1000
1s - loss: 0.0024 - val_loss: 0.0195
Epoch 58/1000
1s - loss: 0.0025 - val_loss: 0.0189
Epoch 59/1000
1s - loss: 0.0024 - val_loss: 0.0205
Epoch 60/1000
1s - loss: 0.0023 - val_loss: 0.0162
Epoch 61/1000
1s - loss: 0.0025 - val_loss: 0.0172
Accuracy: 0.8629
precision recall f1-score support
40 0.900 0.900 0.900 10
41 1.000 1.000 1.000 3
42 1.000 1.000 1.000 1
43 1.000 0.462 0.632 13
44 1.000 1.000 1.000 2
45 1.000 0.944 0.971 18
46 1.000 1.000 1.000 1
47 1.000 1.000 1.000 10
48 1.000 0.875 0.933 40
49 1.000 1.000 1.000 4
50 1.000 0.944 0.971 18
51 1.000 1.000 1.000 3
52 0.614 1.000 0.761 27
53 0.917 0.478 0.629 23
54 0.920 0.920 0.920 25
55 1.000 1.000 1.000 16
56 1.000 0.923 0.960 13
57 0.852 1.000 0.920 23
58 0.917 0.647 0.759 17
59 0.833 0.930 0.879 43
60 1.000 0.957 0.978 23
61 0.889 1.000 0.941 24
62 0.854 1.000 0.921 35
63 1.000 0.273 0.429 11
64 0.887 0.922 0.904 51
65 1.000 1.000 1.000 7
66 1.000 1.000 1.000 10
67 0.966 0.933 0.949 30
68 1.000 0.750 0.857 4
69 0.943 1.000 0.971 33
70 1.000 1.000 1.000 2
71 0.750 0.750 0.750 4
72 0.684 1.000 0.813 13
73 1.000 0.600 0.750 10
74 0.583 1.000 0.737 7
75 1.000 1.000 1.000 2
76 1.000 1.000 1.000 2
77 1.000 1.000 1.000 2
78 1.000 1.000 1.000 10
79 1.000 1.000 1.000 2
80 1.000 1.000 1.000 1
81 1.000 1.000 1.000 1
82 1.000 1.000 1.000 1
83 1.000 1.000 1.000 1
84 1.000 1.000 1.000 1
85 0.000 0.000 0.000 0
86 0.000 0.000 0.000 0
87 0.000 0.000 0.000 0
88 0.000 0.000 0.000 0
avg / total 0.913 0.899 0.891 597
____________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
====================================================================================================
input_6 (InputLayer) (None, 1, 36, 180) 0
____________________________________________________________________________________________________
conv2d_11 (Conv2D) (None, 10, 27, 178) 310
____________________________________________________________________________________________________
conv2d_12 (Conv2D) (None, 512, 6, 1) 922112
____________________________________________________________________________________________________
activation_16 (Activation) (None, 10, 27, 178) 0
____________________________________________________________________________________________________
activation_17 (Activation) (None, 512, 6, 1) 0
____________________________________________________________________________________________________
max_pooling2d_11 (MaxPooling2D) (None, 10, 4, 59) 0
____________________________________________________________________________________________________
max_pooling2d_12 (MaxPooling2D) (None, 512, 3, 1) 0
____________________________________________________________________________________________________
dropout_16 (Dropout) (None, 10, 4, 59) 0
____________________________________________________________________________________________________
dropout_17 (Dropout) (None, 512, 3, 1) 0
____________________________________________________________________________________________________
flatten_11 (Flatten) (None, 2360) 0
____________________________________________________________________________________________________
flatten_12 (Flatten) (None, 1536) 0
____________________________________________________________________________________________________
concatenate_6 (Concatenate) (None, 3896) 0
____________________________________________________________________________________________________
dense_11 (Dense) (None, 256) 997632
____________________________________________________________________________________________________
activation_18 (Activation) (None, 256) 0
____________________________________________________________________________________________________
dropout_18 (Dropout) (None, 256) 0
____________________________________________________________________________________________________
dense_12 (Dense) (None, 49) 12593
====================================================================================================
Total params: 1,932,647.0
Trainable params: 1,932,647.0
Non-trainable params: 0.0
____________________________________________________________________________________________________
Train on 4663 samples, validate on 436 samples
Epoch 1/1000
1s - loss: 0.2269 - val_loss: 0.0482
Epoch 2/1000
1s - loss: 0.0677 - val_loss: 0.0298
Epoch 3/1000
1s - loss: 0.0397 - val_loss: 0.0209
Epoch 4/1000
1s - loss: 0.0284 - val_loss: 0.0176
Epoch 5/1000
1s - loss: 0.0225 - val_loss: 0.0157
Epoch 6/1000
1s - loss: 0.0196 - val_loss: 0.0147
Epoch 7/1000
1s - loss: 0.0170 - val_loss: 0.0129
Epoch 8/1000
1s - loss: 0.0153 - val_loss: 0.0125
Epoch 9/1000
1s - loss: 0.0137 - val_loss: 0.0110
Epoch 10/1000
1s - loss: 0.0128 - val_loss: 0.0103
Epoch 11/1000
1s - loss: 0.0109 - val_loss: 0.0105
Epoch 12/1000
1s - loss: 0.0105 - val_loss: 0.0103
Epoch 13/1000
1s - loss: 0.0089 - val_loss: 0.0107
Epoch 14/1000
1s - loss: 0.0093 - val_loss: 0.0099
Epoch 15/1000
1s - loss: 0.0083 - val_loss: 0.0114
Epoch 16/1000
1s - loss: 0.0078 - val_loss: 0.0097
Epoch 17/1000
1s - loss: 0.0074 - val_loss: 0.0097
Epoch 18/1000
1s - loss: 0.0070 - val_loss: 0.0092
Epoch 19/1000
1s - loss: 0.0065 - val_loss: 0.0103
Epoch 20/1000
1s - loss: 0.0058 - val_loss: 0.0099
Epoch 21/1000
1s - loss: 0.0059 - val_loss: 0.0086
Epoch 22/1000
1s - loss: 0.0058 - val_loss: 0.0098
Epoch 23/1000
1s - loss: 0.0056 - val_loss: 0.0087
Epoch 24/1000
1s - loss: 0.0053 - val_loss: 0.0090
Epoch 25/1000
1s - loss: 0.0048 - val_loss: 0.0096
Epoch 26/1000
1s - loss: 0.0050 - val_loss: 0.0098
Epoch 27/1000
1s - loss: 0.0046 - val_loss: 0.0101
Epoch 28/1000
1s - loss: 0.0044 - val_loss: 0.0096
Epoch 29/1000
1s - loss: 0.0041 - val_loss: 0.0092
Epoch 30/1000
1s - loss: 0.0038 - val_loss: 0.0104
Epoch 31/1000
1s - loss: 0.0039 - val_loss: 0.0103
Epoch 32/1000
1s - loss: 0.0040 - val_loss: 0.0084
Epoch 33/1000
1s - loss: 0.0039 - val_loss: 0.0089
Epoch 34/1000
1s - loss: 0.0034 - val_loss: 0.0090
Epoch 35/1000
1s - loss: 0.0038 - val_loss: 0.0083
Epoch 36/1000
1s - loss: 0.0038 - val_loss: 0.0097
Epoch 37/1000
1s - loss: 0.0038 - val_loss: 0.0101
Epoch 38/1000
1s - loss: 0.0036 - val_loss: 0.0093
Epoch 39/1000
1s - loss: 0.0038 - val_loss: 0.0097
Epoch 40/1000
1s - loss: 0.0034 - val_loss: 0.0096
Epoch 41/1000
1s - loss: 0.0038 - val_loss: 0.0094
Epoch 42/1000
1s - loss: 0.0036 - val_loss: 0.0083
Epoch 43/1000
1s - loss: 0.0032 - val_loss: 0.0091
Epoch 44/1000
1s - loss: 0.0030 - val_loss: 0.0090
Epoch 45/1000
1s - loss: 0.0032 - val_loss: 0.0085
Epoch 46/1000
1s - loss: 0.0033 - val_loss: 0.0079
Epoch 47/1000
1s - loss: 0.0033 - val_loss: 0.0100
Epoch 48/1000
1s - loss: 0.0029 - val_loss: 0.0104
Epoch 49/1000
1s - loss: 0.0030 - val_loss: 0.0090
Epoch 50/1000
1s - loss: 0.0028 - val_loss: 0.0112
Epoch 51/1000
1s - loss: 0.0025 - val_loss: 0.0096
Epoch 52/1000
1s - loss: 0.0036 - val_loss: 0.0105
Epoch 53/1000
1s - loss: 0.0031 - val_loss: 0.0086
Epoch 54/1000
1s - loss: 0.0034 - val_loss: 0.0106
Epoch 55/1000
1s - loss: 0.0028 - val_loss: 0.0124
Epoch 56/1000
1s - loss: 0.0028 - val_loss: 0.0093
Epoch 57/1000
1s - loss: 0.0029 - val_loss: 0.0104
Epoch 58/1000
1s - loss: 0.0028 - val_loss: 0.0122
Accuracy: 0.9014
precision recall f1-score support
40 0.000 0.000 0.000 0
41 0.000 0.000 0.000 0
42 0.000 0.000 0.000 0
43 1.000 1.000 1.000 5
44 0.000 0.000 0.000 0
45 1.000 1.000 1.000 20
46 0.000 0.000 0.000 0
47 1.000 0.933 0.966 15
48 1.000 1.000 1.000 44
49 0.941 1.000 0.970 16
50 1.000 1.000 1.000 20
51 1.000 1.000 1.000 2
52 0.972 1.000 0.986 35
53 1.000 0.500 0.667 12
54 0.868 0.943 0.904 35
55 0.933 1.000 0.966 28
56 0.947 1.000 0.973 18
57 1.000 0.880 0.936 25
58 1.000 0.857 0.923 14
59 1.000 0.854 0.921 41
60 1.000 1.000 1.000 13
61 0.867 0.929 0.897 42
62 0.871 0.900 0.885 30
63 1.000 0.333 0.500 6
64 1.000 0.864 0.927 22
65 0.833 1.000 0.909 5
66 0.769 1.000 0.870 10
67 1.000 0.870 0.930 23
68 0.833 0.833 0.833 6
69 0.960 1.000 0.980 24
70 1.000 1.000 1.000 1
71 1.000 0.889 0.941 9
72 1.000 0.857 0.923 7
73 1.000 1.000 1.000 5
74 0.556 0.833 0.667 6
75 0.000 0.000 0.000 0
76 1.000 1.000 1.000 1
77 0.000 0.000 0.000 0
78 1.000 1.000 1.000 4
79 0.000 0.000 0.000 0
80 0.000 0.000 0.000 0
81 0.000 0.000 0.000 0
82 0.000 0.000 0.000 0
83 0.000 0.000 0.000 0
84 0.000 0.000 0.000 0
85 0.000 0.000 0.000 0
86 0.000 0.000 0.000 0
87 0.000 0.000 0.000 0
88 0.000 0.000 0.000 0
avg / total 0.951 0.926 0.933 544
____________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
====================================================================================================
input_7 (InputLayer) (None, 1, 36, 180) 0
____________________________________________________________________________________________________
conv2d_13 (Conv2D) (None, 10, 27, 178) 310
____________________________________________________________________________________________________
conv2d_14 (Conv2D) (None, 512, 6, 1) 922112
____________________________________________________________________________________________________
activation_19 (Activation) (None, 10, 27, 178) 0
____________________________________________________________________________________________________
activation_20 (Activation) (None, 512, 6, 1) 0
____________________________________________________________________________________________________
max_pooling2d_13 (MaxPooling2D) (None, 10, 4, 59) 0
____________________________________________________________________________________________________
max_pooling2d_14 (MaxPooling2D) (None, 512, 3, 1) 0
____________________________________________________________________________________________________
dropout_19 (Dropout) (None, 10, 4, 59) 0
____________________________________________________________________________________________________
dropout_20 (Dropout) (None, 512, 3, 1) 0
____________________________________________________________________________________________________
flatten_13 (Flatten) (None, 2360) 0
____________________________________________________________________________________________________
flatten_14 (Flatten) (None, 1536) 0
____________________________________________________________________________________________________
concatenate_7 (Concatenate) (None, 3896) 0
____________________________________________________________________________________________________
dense_13 (Dense) (None, 256) 997632
____________________________________________________________________________________________________
activation_21 (Activation) (None, 256) 0
____________________________________________________________________________________________________
dropout_21 (Dropout) (None, 256) 0
____________________________________________________________________________________________________
dense_14 (Dense) (None, 49) 12593
====================================================================================================
Total params: 1,932,647.0
Trainable params: 1,932,647.0
Non-trainable params: 0.0
____________________________________________________________________________________________________
Train on 4655 samples, validate on 444 samples
Epoch 1/1000
1s - loss: 0.2130 - val_loss: 0.0472
Epoch 2/1000
1s - loss: 0.0623 - val_loss: 0.0180
Epoch 3/1000
1s - loss: 0.0354 - val_loss: 0.0113
Epoch 4/1000
1s - loss: 0.0259 - val_loss: 0.0084
Epoch 5/1000
1s - loss: 0.0199 - val_loss: 0.0072
Epoch 6/1000
1s - loss: 0.0171 - val_loss: 0.0056
Epoch 7/1000
1s - loss: 0.0152 - val_loss: 0.0059
Epoch 8/1000
1s - loss: 0.0127 - val_loss: 0.0047
Epoch 9/1000
1s - loss: 0.0116 - val_loss: 0.0041
Epoch 10/1000
1s - loss: 0.0110 - val_loss: 0.0047
Epoch 11/1000
1s - loss: 0.0096 - val_loss: 0.0059
Epoch 12/1000
1s - loss: 0.0086 - val_loss: 0.0038
Epoch 13/1000
1s - loss: 0.0082 - val_loss: 0.0041
Epoch 14/1000
1s - loss: 0.0080 - val_loss: 0.0043
Epoch 15/1000
1s - loss: 0.0074 - val_loss: 0.0037
Epoch 16/1000
1s - loss: 0.0066 - val_loss: 0.0031
Epoch 17/1000
1s - loss: 0.0061 - val_loss: 0.0029
Epoch 18/1000
1s - loss: 0.0059 - val_loss: 0.0027
Epoch 19/1000
1s - loss: 0.0057 - val_loss: 0.0041
Epoch 20/1000
1s - loss: 0.0053 - val_loss: 0.0030
Epoch 21/1000
1s - loss: 0.0049 - val_loss: 0.0032
Epoch 22/1000
1s - loss: 0.0054 - val_loss: 0.0034
Epoch 23/1000
1s - loss: 0.0046 - val_loss: 0.0040
Epoch 24/1000
1s - loss: 0.0045 - val_loss: 0.0039
Epoch 25/1000
1s - loss: 0.0045 - val_loss: 0.0024
Epoch 26/1000
1s - loss: 0.0045 - val_loss: 0.0030
Epoch 27/1000
1s - loss: 0.0038 - val_loss: 0.0028
Epoch 28/1000
1s - loss: 0.0038 - val_loss: 0.0020
Epoch 29/1000
1s - loss: 0.0037 - val_loss: 0.0028
Epoch 30/1000
1s - loss: 0.0039 - val_loss: 0.0025
Epoch 31/1000
1s - loss: 0.0041 - val_loss: 0.0030
Epoch 32/1000
1s - loss: 0.0035 - val_loss: 0.0042
Epoch 33/1000
1s - loss: 0.0032 - val_loss: 0.0027
Epoch 34/1000
1s - loss: 0.0033 - val_loss: 0.0043
Epoch 35/1000
1s - loss: 0.0033 - val_loss: 0.0028
Epoch 36/1000
1s - loss: 0.0031 - val_loss: 0.0027
Epoch 37/1000
1s - loss: 0.0031 - val_loss: 0.0031
Epoch 38/1000
1s - loss: 0.0034 - val_loss: 0.0023
Epoch 39/1000
1s - loss: 0.0031 - val_loss: 0.0032
Epoch 40/1000
1s - loss: 0.0028 - val_loss: 0.0023
Epoch 41/1000
1s - loss: 0.0025 - val_loss: 0.0036
Epoch 42/1000
1s - loss: 0.0031 - val_loss: 0.0023
Epoch 43/1000
1s - loss: 0.0032 - val_loss: 0.0036
Epoch 44/1000
1s - loss: 0.0029 - val_loss: 0.0027
Epoch 45/1000
1s - loss: 0.0029 - val_loss: 0.0032
Epoch 46/1000
1s - loss: 0.0031 - val_loss: 0.0026
Epoch 47/1000
1s - loss: 0.0031 - val_loss: 0.0031
Epoch 48/1000
1s - loss: 0.0031 - val_loss: 0.0017
Accuracy: 0.9842
precision recall f1-score support
40 1.000 1.000 1.000 13
41 1.000 1.000 1.000 6
42 1.000 1.000 1.000 5
43 1.000 1.000 1.000 9
44 1.000 1.000 1.000 2
45 1.000 1.000 1.000 28
46 1.000 1.000 1.000 4
47 1.000 1.000 1.000 17
48 1.000 1.000 1.000 45
49 1.000 1.000 1.000 10
50 1.000 0.973 0.986 37
51 1.000 1.000 1.000 5
52 1.000 1.000 1.000 44
53 1.000 1.000 1.000 14
54 1.000 1.000 1.000 24
55 1.000 1.000 1.000 37
56 1.000 1.000 1.000 15
57 1.000 1.000 1.000 35
58 1.000 1.000 1.000 8
59 0.958 1.000 0.979 46
60 1.000 1.000 1.000 14
61 1.000 1.000 1.000 26
62 1.000 0.967 0.983 30
63 1.000 1.000 1.000 3
64 0.960 1.000 0.980 48
65 1.000 1.000 1.000 2
66 1.000 0.929 0.963 14
67 1.000 0.923 0.960 13
68 1.000 1.000 1.000 1
69 0.929 1.000 0.963 13
70 1.000 1.000 1.000 2
71 1.000 1.000 1.000 3
72 1.000 0.500 0.667 2
73 1.000 1.000 1.000 1
74 1.000 1.000 1.000 4
75 1.000 1.000 1.000 2
76 1.000 1.000 1.000 1
77 1.000 1.000 1.000 1
78 1.000 1.000 1.000 1
79 1.000 1.000 1.000 1
80 1.000 1.000 1.000 1
81 1.000 1.000 1.000 1
82 1.000 1.000 1.000 1
83 1.000 1.000 1.000 1
84 1.000 1.000 1.000 1
85 0.000 0.000 0.000 0
86 0.000 0.000 0.000 0
87 0.000 0.000 0.000 0
88 0.000 0.000 0.000 0
avg / total 0.992 0.992 0.991 591
____________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
====================================================================================================
input_8 (InputLayer) (None, 1, 36, 180) 0
____________________________________________________________________________________________________
conv2d_15 (Conv2D) (None, 10, 27, 178) 310
____________________________________________________________________________________________________
conv2d_16 (Conv2D) (None, 512, 6, 1) 922112
____________________________________________________________________________________________________
activation_22 (Activation) (None, 10, 27, 178) 0
____________________________________________________________________________________________________
activation_23 (Activation) (None, 512, 6, 1) 0
____________________________________________________________________________________________________
max_pooling2d_15 (MaxPooling2D) (None, 10, 4, 59) 0
____________________________________________________________________________________________________
max_pooling2d_16 (MaxPooling2D) (None, 512, 3, 1) 0
____________________________________________________________________________________________________
dropout_22 (Dropout) (None, 10, 4, 59) 0
____________________________________________________________________________________________________
dropout_23 (Dropout) (None, 512, 3, 1) 0
____________________________________________________________________________________________________
flatten_15 (Flatten) (None, 2360) 0
____________________________________________________________________________________________________
flatten_16 (Flatten) (None, 1536) 0
____________________________________________________________________________________________________
concatenate_8 (Concatenate) (None, 3896) 0
____________________________________________________________________________________________________
dense_15 (Dense) (None, 256) 997632
____________________________________________________________________________________________________
activation_24 (Activation) (None, 256) 0
____________________________________________________________________________________________________
dropout_24 (Dropout) (None, 256) 0
____________________________________________________________________________________________________
dense_16 (Dense) (None, 49) 12593
====================================================================================================
Total params: 1,932,647.0
Trainable params: 1,932,647.0
Non-trainable params: 0.0
____________________________________________________________________________________________________
Train on 4680 samples, validate on 419 samples
Epoch 1/1000
1s - loss: 0.2091 - val_loss: 0.0470
Epoch 2/1000
1s - loss: 0.0643 - val_loss: 0.0190
Epoch 3/1000
1s - loss: 0.0379 - val_loss: 0.0133
Epoch 4/1000
1s - loss: 0.0270 - val_loss: 0.0109
Epoch 5/1000
1s - loss: 0.0215 - val_loss: 0.0100
Epoch 6/1000
1s - loss: 0.0177 - val_loss: 0.0089
Epoch 7/1000
1s - loss: 0.0155 - val_loss: 0.0088
Epoch 8/1000
1s - loss: 0.0138 - val_loss: 0.0078
Epoch 9/1000
1s - loss: 0.0116 - val_loss: 0.0086
Epoch 10/1000
1s - loss: 0.0107 - val_loss: 0.0076
Epoch 11/1000
1s - loss: 0.0097 - val_loss: 0.0070
Epoch 12/1000
1s - loss: 0.0091 - val_loss: 0.0065
Epoch 13/1000
1s - loss: 0.0086 - val_loss: 0.0069
Epoch 14/1000
1s - loss: 0.0077 - val_loss: 0.0070
Epoch 15/1000
1s - loss: 0.0072 - val_loss: 0.0075
Epoch 16/1000
1s - loss: 0.0067 - val_loss: 0.0074
Epoch 17/1000
1s - loss: 0.0061 - val_loss: 0.0065
Epoch 18/1000
1s - loss: 0.0060 - val_loss: 0.0068
Epoch 19/1000
1s - loss: 0.0057 - val_loss: 0.0069
Epoch 20/1000
1s - loss: 0.0061 - val_loss: 0.0064
Epoch 21/1000
1s - loss: 0.0057 - val_loss: 0.0071
Epoch 22/1000
1s - loss: 0.0052 - val_loss: 0.0069
Epoch 23/1000
1s - loss: 0.0046 - val_loss: 0.0063
Epoch 24/1000
1s - loss: 0.0046 - val_loss: 0.0074
Epoch 25/1000
1s - loss: 0.0044 - val_loss: 0.0076
Epoch 26/1000
1s - loss: 0.0045 - val_loss: 0.0068
Epoch 27/1000
1s - loss: 0.0042 - val_loss: 0.0072
Epoch 28/1000
1s - loss: 0.0042 - val_loss: 0.0075
Epoch 29/1000
1s - loss: 0.0037 - val_loss: 0.0077
Epoch 30/1000
1s - loss: 0.0037 - val_loss: 0.0074
Epoch 31/1000
1s - loss: 0.0039 - val_loss: 0.0085
Epoch 32/1000
1s - loss: 0.0035 - val_loss: 0.0079
Epoch 33/1000
1s - loss: 0.0033 - val_loss: 0.0081
Epoch 34/1000
1s - loss: 0.0033 - val_loss: 0.0078
Epoch 35/1000
1s - loss: 0.0029 - val_loss: 0.0076
Epoch 36/1000
1s - loss: 0.0032 - val_loss: 0.0082
Epoch 37/1000
1s - loss: 0.0029 - val_loss: 0.0074
Epoch 38/1000
1s - loss: 0.0030 - val_loss: 0.0063
Epoch 39/1000
1s - loss: 0.0030 - val_loss: 0.0069
Epoch 40/1000
1s - loss: 0.0027 - val_loss: 0.0071
Epoch 41/1000
1s - loss: 0.0026 - val_loss: 0.0070
Epoch 42/1000
1s - loss: 0.0027 - val_loss: 0.0074
Epoch 43/1000
1s - loss: 0.0034 - val_loss: 0.0062
Epoch 44/1000
1s - loss: 0.0035 - val_loss: 0.0073
Epoch 45/1000
1s - loss: 0.0032 - val_loss: 0.0086
Epoch 46/1000
1s - loss: 0.0029 - val_loss: 0.0088
Epoch 47/1000
1s - loss: 0.0028 - val_loss: 0.0078
Epoch 48/1000
1s - loss: 0.0024 - val_loss: 0.0082
Epoch 49/1000
1s - loss: 0.0022 - val_loss: 0.0086
Epoch 50/1000
1s - loss: 0.0024 - val_loss: 0.0090
Epoch 51/1000
1s - loss: 0.0023 - val_loss: 0.0084
Epoch 52/1000
1s - loss: 0.0026 - val_loss: 0.0077
Epoch 53/1000
1s - loss: 0.0023 - val_loss: 0.0088
Epoch 54/1000
1s - loss: 0.0024 - val_loss: 0.0088
Epoch 55/1000
1s - loss: 0.0024 - val_loss: 0.0080
Epoch 56/1000
1s - loss: 0.0023 - val_loss: 0.0073
Accuracy: 0.9547
precision recall f1-score support
40 1.000 1.000 1.000 5
41 1.000 1.000 1.000 1
42 0.000 0.000 0.000 0
43 1.000 1.000 1.000 3
44 0.000 0.000 0.000 0
45 1.000 1.000 1.000 21
46 1.000 1.000 1.000 3
47 0.938 0.938 0.938 16
48 1.000 1.000 1.000 30
49 1.000 0.941 0.970 17
50 1.000 1.000 1.000 22
51 1.000 1.000 1.000 1
52 1.000 0.971 0.986 35
53 0.889 1.000 0.941 8
54 0.944 1.000 0.971 34
55 1.000 1.000 1.000 26
56 1.000 1.000 1.000 22
57 0.912 0.969 0.939 32
58 0.818 1.000 0.900 9
59 1.000 0.925 0.961 40
60 1.000 1.000 1.000 14
61 0.978 1.000 0.989 44
62 1.000 1.000 1.000 30
63 1.000 1.000 1.000 7
64 1.000 0.962 0.980 26
65 1.000 1.000 1.000 9
66 1.000 1.000 1.000 10
67 1.000 1.000 1.000 19
68 1.000 1.000 1.000 4
69 0.955 1.000 0.977 21
70 0.667 1.000 0.800 4
71 0.833 0.833 0.833 6
72 0.875 0.875 0.875 8
73 1.000 0.750 0.857 4
74 1.000 0.900 0.947 10
75 1.000 1.000 1.000 3
76 1.000 1.000 1.000 1
77 1.000 1.000 1.000 1
78 1.000 1.000 1.000 1
79 1.000 1.000 1.000 1
80 0.000 0.000 0.000 0
81 0.000 0.000 0.000 0
82 0.000 0.000 0.000 0
83 0.000 0.000 0.000 0
84 0.000 0.000 0.000 0
85 0.000 0.000 0.000 0
86 0.000 0.000 0.000 0
87 0.000 0.000 0.000 0
88 0.000 0.000 0.000 0
avg / total 0.975 0.978 0.976 548
____________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
====================================================================================================
input_9 (InputLayer) (None, 1, 36, 180) 0
____________________________________________________________________________________________________
conv2d_17 (Conv2D) (None, 10, 27, 178) 310
____________________________________________________________________________________________________
conv2d_18 (Conv2D) (None, 512, 6, 1) 922112
____________________________________________________________________________________________________
activation_25 (Activation) (None, 10, 27, 178) 0
____________________________________________________________________________________________________
activation_26 (Activation) (None, 512, 6, 1) 0
____________________________________________________________________________________________________
max_pooling2d_17 (MaxPooling2D) (None, 10, 4, 59) 0
____________________________________________________________________________________________________
max_pooling2d_18 (MaxPooling2D) (None, 512, 3, 1) 0
____________________________________________________________________________________________________
dropout_25 (Dropout) (None, 10, 4, 59) 0
____________________________________________________________________________________________________
dropout_26 (Dropout) (None, 512, 3, 1) 0
____________________________________________________________________________________________________
flatten_17 (Flatten) (None, 2360) 0
____________________________________________________________________________________________________
flatten_18 (Flatten) (None, 1536) 0
____________________________________________________________________________________________________
concatenate_9 (Concatenate) (None, 3896) 0
____________________________________________________________________________________________________
dense_17 (Dense) (None, 256) 997632
____________________________________________________________________________________________________
activation_27 (Activation) (None, 256) 0
____________________________________________________________________________________________________
dropout_27 (Dropout) (None, 256) 0
____________________________________________________________________________________________________
dense_18 (Dense) (None, 49) 12593
====================================================================================================
Total params: 1,932,647.0
Trainable params: 1,932,647.0
Non-trainable params: 0.0
____________________________________________________________________________________________________
Train on 4712 samples, validate on 387 samples
Epoch 1/1000
1s - loss: 0.2221 - val_loss: 0.0456
Epoch 2/1000
1s - loss: 0.0659 - val_loss: 0.0270
Epoch 3/1000
1s - loss: 0.0382 - val_loss: 0.0194
Epoch 4/1000
1s - loss: 0.0279 - val_loss: 0.0166
Epoch 5/1000
1s - loss: 0.0230 - val_loss: 0.0159
Epoch 6/1000
1s - loss: 0.0182 - val_loss: 0.0140
Epoch 7/1000
1s - loss: 0.0157 - val_loss: 0.0130
Epoch 8/1000
1s - loss: 0.0139 - val_loss: 0.0127
Epoch 9/1000
1s - loss: 0.0125 - val_loss: 0.0125
Epoch 10/1000
1s - loss: 0.0112 - val_loss: 0.0113
Epoch 11/1000
1s - loss: 0.0104 - val_loss: 0.0128
Epoch 12/1000
1s - loss: 0.0091 - val_loss: 0.0122
Epoch 13/1000
1s - loss: 0.0087 - val_loss: 0.0122
Epoch 14/1000
1s - loss: 0.0084 - val_loss: 0.0111
Epoch 15/1000
1s - loss: 0.0074 - val_loss: 0.0116
Epoch 16/1000
1s - loss: 0.0073 - val_loss: 0.0119
Epoch 17/1000
1s - loss: 0.0068 - val_loss: 0.0128
Epoch 18/1000
1s - loss: 0.0067 - val_loss: 0.0129
Epoch 19/1000
1s - loss: 0.0063 - val_loss: 0.0107
Epoch 20/1000
1s - loss: 0.0059 - val_loss: 0.0111
Epoch 21/1000
1s - loss: 0.0056 - val_loss: 0.0110
Epoch 22/1000
1s - loss: 0.0051 - val_loss: 0.0111
Epoch 23/1000
1s - loss: 0.0054 - val_loss: 0.0112
Epoch 24/1000
1s - loss: 0.0047 - val_loss: 0.0125
Epoch 25/1000
1s - loss: 0.0043 - val_loss: 0.0119
Epoch 26/1000
1s - loss: 0.0044 - val_loss: 0.0119
Epoch 27/1000
1s - loss: 0.0046 - val_loss: 0.0120
Epoch 28/1000
1s - loss: 0.0046 - val_loss: 0.0113
Epoch 29/1000
1s - loss: 0.0041 - val_loss: 0.0098
Epoch 30/1000
1s - loss: 0.0040 - val_loss: 0.0107
Epoch 31/1000
1s - loss: 0.0038 - val_loss: 0.0105
Epoch 32/1000
1s - loss: 0.0037 - val_loss: 0.0132
Epoch 33/1000
1s - loss: 0.0038 - val_loss: 0.0115
Epoch 34/1000
1s - loss: 0.0034 - val_loss: 0.0126
Epoch 35/1000
1s - loss: 0.0036 - val_loss: 0.0135
Epoch 36/1000
1s - loss: 0.0036 - val_loss: 0.0130
Epoch 37/1000
1s - loss: 0.0031 - val_loss: 0.0124
Epoch 38/1000
1s - loss: 0.0035 - val_loss: 0.0122
Epoch 39/1000
1s - loss: 0.0028 - val_loss: 0.0123
Epoch 40/1000
1s - loss: 0.0029 - val_loss: 0.0117
Epoch 41/1000
1s - loss: 0.0029 - val_loss: 0.0136
Epoch 42/1000
1s - loss: 0.0028 - val_loss: 0.0129
Epoch 43/1000
1s - loss: 0.0030 - val_loss: 0.0134
Epoch 44/1000
1s - loss: 0.0027 - val_loss: 0.0113
Epoch 45/1000
1s - loss: 0.0029 - val_loss: 0.0131
Epoch 46/1000
1s - loss: 0.0032 - val_loss: 0.0124
Epoch 47/1000
1s - loss: 0.0029 - val_loss: 0.0111
Epoch 48/1000
1s - loss: 0.0027 - val_loss: 0.0128
Epoch 49/1000
1s - loss: 0.0028 - val_loss: 0.0128
Epoch 50/1000
1s - loss: 0.0025 - val_loss: 0.0141
Epoch 51/1000
1s - loss: 0.0026 - val_loss: 0.0124
Epoch 52/1000
1s - loss: 0.0022 - val_loss: 0.0131
Epoch 53/1000
1s - loss: 0.0022 - val_loss: 0.0134
Epoch 54/1000
1s - loss: 0.0024 - val_loss: 0.0122
Epoch 55/1000
1s - loss: 0.0022 - val_loss: 0.0134
Epoch 56/1000
1s - loss: 0.0026 - val_loss: 0.0117
Epoch 57/1000
1s - loss: 0.0024 - val_loss: 0.0126
Epoch 58/1000
1s - loss: 0.0026 - val_loss: 0.0123
Epoch 59/1000
1s - loss: 0.0024 - val_loss: 0.0124
Accuracy: 0.8992
precision recall f1-score support
40 1.000 1.000 1.000 1
41 0.000 0.000 0.000 1
42 0.000 0.000 0.000 0
43 1.000 1.000 1.000 2
44 1.000 1.000 1.000 1
45 1.000 0.952 0.976 21
46 1.000 1.000 1.000 4
47 1.000 1.000 1.000 6
48 0.960 1.000 0.980 24
49 1.000 1.000 1.000 7
50 1.000 1.000 1.000 43
51 1.000 1.000 1.000 1
52 0.939 0.939 0.939 33
53 0.909 1.000 0.952 10
54 0.963 1.000 0.981 26
55 1.000 0.960 0.980 25
56 1.000 1.000 1.000 18
57 0.872 1.000 0.932 34
58 0.857 1.000 0.923 6
59 0.946 0.921 0.933 38
60 0.950 1.000 0.974 19
61 0.969 0.912 0.939 34
62 0.938 0.882 0.909 34
63 0.800 1.000 0.889 4
64 0.875 1.000 0.933 28
65 0.900 1.000 0.947 9
66 1.000 0.909 0.952 11
67 1.000 0.933 0.966 15
68 1.000 1.000 1.000 3
69 0.969 0.969 0.969 32
70 1.000 1.000 1.000 6
71 0.833 1.000 0.909 5
72 0.333 0.500 0.400 2
73 1.000 0.500 0.667 2
74 1.000 0.857 0.923 7
75 0.000 0.000 0.000 0
76 0.000 0.000 0.000 0
77 0.000 0.000 0.000 0
78 1.000 1.000 1.000 1
79 0.000 0.000 0.000 0
80 0.000 0.000 0.000 0
81 0.000 0.000 0.000 0
82 0.000 0.000 0.000 0
83 1.000 1.000 1.000 1
84 0.000 0.000 0.000 0
85 0.000 0.000 0.000 0
86 0.000 0.000 0.000 0
87 0.000 0.000 0.000 0
88 0.000 0.000 0.000 0
avg / total 0.950 0.959 0.953 514
____________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
====================================================================================================
input_10 (InputLayer) (None, 1, 36, 180) 0
____________________________________________________________________________________________________
conv2d_19 (Conv2D) (None, 10, 27, 178) 310
____________________________________________________________________________________________________
conv2d_20 (Conv2D) (None, 512, 6, 1) 922112
____________________________________________________________________________________________________
activation_28 (Activation) (None, 10, 27, 178) 0
____________________________________________________________________________________________________
activation_29 (Activation) (None, 512, 6, 1) 0
____________________________________________________________________________________________________
max_pooling2d_19 (MaxPooling2D) (None, 10, 4, 59) 0
____________________________________________________________________________________________________
max_pooling2d_20 (MaxPooling2D) (None, 512, 3, 1) 0
____________________________________________________________________________________________________
dropout_28 (Dropout) (None, 10, 4, 59) 0
____________________________________________________________________________________________________
dropout_29 (Dropout) (None, 512, 3, 1) 0
____________________________________________________________________________________________________
flatten_19 (Flatten) (None, 2360) 0
____________________________________________________________________________________________________
flatten_20 (Flatten) (None, 1536) 0
____________________________________________________________________________________________________
concatenate_10 (Concatenate) (None, 3896) 0
____________________________________________________________________________________________________
dense_19 (Dense) (None, 256) 997632
____________________________________________________________________________________________________
activation_30 (Activation) (None, 256) 0
____________________________________________________________________________________________________
dropout_30 (Dropout) (None, 256) 0
____________________________________________________________________________________________________
dense_20 (Dense) (None, 49) 12593
====================================================================================================
Total params: 1,932,647.0
Trainable params: 1,932,647.0
Non-trainable params: 0.0
____________________________________________________________________________________________________
Train on 4774 samples, validate on 325 samples
Epoch 1/1000
1s - loss: 0.2259 - val_loss: 0.0494
Epoch 2/1000
1s - loss: 0.0659 - val_loss: 0.0296
Epoch 3/1000
1s - loss: 0.0392 - val_loss: 0.0228
Epoch 4/1000
1s - loss: 0.0288 - val_loss: 0.0218
Epoch 5/1000
1s - loss: 0.0232 - val_loss: 0.0190
Epoch 6/1000
1s - loss: 0.0193 - val_loss: 0.0194
Epoch 7/1000
1s - loss: 0.0166 - val_loss: 0.0179
Epoch 8/1000
1s - loss: 0.0152 - val_loss: 0.0168
Epoch 9/1000
1s - loss: 0.0131 - val_loss: 0.0156
Epoch 10/1000
1s - loss: 0.0117 - val_loss: 0.0152
Epoch 11/1000
1s - loss: 0.0112 - val_loss: 0.0150
Epoch 12/1000
1s - loss: 0.0099 - val_loss: 0.0141
Epoch 13/1000
1s - loss: 0.0091 - val_loss: 0.0152
Epoch 14/1000
1s - loss: 0.0087 - val_loss: 0.0153
Epoch 15/1000
1s - loss: 0.0079 - val_loss: 0.0156
Epoch 16/1000
1s - loss: 0.0075 - val_loss: 0.0139
Epoch 17/1000
1s - loss: 0.0071 - val_loss: 0.0146
Epoch 18/1000
1s - loss: 0.0066 - val_loss: 0.0154
Epoch 19/1000
1s - loss: 0.0065 - val_loss: 0.0149
Epoch 20/1000
1s - loss: 0.0061 - val_loss: 0.0145
Epoch 21/1000
1s - loss: 0.0062 - val_loss: 0.0151
Epoch 22/1000
1s - loss: 0.0056 - val_loss: 0.0131
Epoch 23/1000
1s - loss: 0.0051 - val_loss: 0.0134
Epoch 24/1000
1s - loss: 0.0053 - val_loss: 0.0167
Epoch 25/1000
1s - loss: 0.0054 - val_loss: 0.0151
Epoch 26/1000
1s - loss: 0.0050 - val_loss: 0.0145
Epoch 27/1000
1s - loss: 0.0045 - val_loss: 0.0136
Epoch 28/1000
1s - loss: 0.0045 - val_loss: 0.0146
Epoch 29/1000
1s - loss: 0.0045 - val_loss: 0.0140
Epoch 30/1000
1s - loss: 0.0043 - val_loss: 0.0130
Epoch 31/1000
1s - loss: 0.0044 - val_loss: 0.0159
Epoch 32/1000
1s - loss: 0.0041 - val_loss: 0.0159
Epoch 33/1000
1s - loss: 0.0035 - val_loss: 0.0158
Epoch 34/1000
1s - loss: 0.0036 - val_loss: 0.0159
Epoch 35/1000
1s - loss: 0.0039 - val_loss: 0.0187
Epoch 36/1000
1s - loss: 0.0040 - val_loss: 0.0155
Epoch 37/1000
1s - loss: 0.0035 - val_loss: 0.0147
Epoch 38/1000
1s - loss: 0.0035 - val_loss: 0.0166
Epoch 39/1000
1s - loss: 0.0033 - val_loss: 0.0155
Epoch 40/1000
1s - loss: 0.0036 - val_loss: 0.0177
Epoch 41/1000
1s - loss: 0.0033 - val_loss: 0.0151
Epoch 42/1000
1s - loss: 0.0031 - val_loss: 0.0180
Epoch 43/1000
1s - loss: 0.0034 - val_loss: 0.0200
Epoch 44/1000
1s - loss: 0.0031 - val_loss: 0.0163
Epoch 45/1000
1s - loss: 0.0032 - val_loss: 0.0161
Epoch 46/1000
1s - loss: 0.0028 - val_loss: 0.0167
Epoch 47/1000
1s - loss: 0.0032 - val_loss: 0.0182
Epoch 48/1000
1s - loss: 0.0028 - val_loss: 0.0199
Epoch 49/1000
1s - loss: 0.0027 - val_loss: 0.0181
Epoch 50/1000
1s - loss: 0.0024 - val_loss: 0.0175
Epoch 51/1000
1s - loss: 0.0026 - val_loss: 0.0160
Epoch 52/1000
1s - loss: 0.0028 - val_loss: 0.0167
Epoch 53/1000
1s - loss: 0.0024 - val_loss: 0.0189
Epoch 54/1000
1s - loss: 0.0027 - val_loss: 0.0186
Epoch 55/1000
1s - loss: 0.0024 - val_loss: 0.0189
Epoch 56/1000
1s - loss: 0.0028 - val_loss: 0.0187
Epoch 57/1000
1s - loss: 0.0026 - val_loss: 0.0182
Epoch 58/1000
1s - loss: 0.0024 - val_loss: 0.0197
Epoch 59/1000
1s - loss: 0.0025 - val_loss: 0.0195
Epoch 60/1000
1s - loss: 0.0023 - val_loss: 0.0198
Epoch 61/1000
1s - loss: 0.0018 - val_loss: 0.0213
Epoch 62/1000
1s - loss: 0.0021 - val_loss: 0.0207
Epoch 63/1000
1s - loss: 0.0022 - val_loss: 0.0214
Epoch 64/1000
1s - loss: 0.0024 - val_loss: 0.0191
Epoch 65/1000
1s - loss: 0.0023 - val_loss: 0.0207
Epoch 66/1000
1s - loss: 0.0022 - val_loss: 0.0207
Epoch 67/1000
1s - loss: 0.0025 - val_loss: 0.0171
Epoch 68/1000
1s - loss: 0.0023 - val_loss: 0.0198
Accuracy: 0.92
precision recall f1-score support
40 0.000 0.000 0.000 0
41 1.000 1.000 1.000 1
42 1.000 1.000 1.000 2
43 1.000 1.000 1.000 2
44 0.000 0.000 0.000 0
45 1.000 1.000 1.000 17
46 1.000 1.000 1.000 4
47 0.833 1.000 0.909 15
48 1.000 0.969 0.984 32
49 0.947 0.947 0.947 19
50 1.000 0.960 0.980 25
51 0.750 1.000 0.857 3
52 1.000 1.000 1.000 34
53 1.000 1.000 1.000 6
54 0.871 0.964 0.915 28
55 1.000 0.958 0.979 24
56 1.000 1.000 1.000 9
57 0.913 0.840 0.875 25
58 0.818 1.000 0.900 9
59 0.955 0.955 0.955 22
60 0.923 1.000 0.960 12
61 0.960 0.923 0.941 26
62 0.955 0.913 0.933 23
63 1.000 0.667 0.800 3
64 1.000 0.929 0.963 14
65 1.000 1.000 1.000 7
66 0.875 0.875 0.875 8
67 0.933 1.000 0.966 14
68 1.000 1.000 1.000 4
69 0.944 1.000 0.971 17
70 0.800 0.667 0.727 6
71 0.714 1.000 0.833 5
72 1.000 0.667 0.800 3
73 1.000 1.000 1.000 2
74 1.000 0.778 0.875 9
75 1.000 1.000 1.000 1
76 1.000 1.000 1.000 2
77 1.000 1.000 1.000 1
78 1.000 1.000 1.000 2
79 1.000 1.000 1.000 2
80 1.000 1.000 1.000 1
81 0.000 0.000 0.000 1
82 1.000 1.000 1.000 1
83 1.000 1.000 1.000 3
84 1.000 1.000 1.000 1
85 0.000 0.000 0.000 0
86 0.000 0.000 0.000 0
87 0.000 0.000 0.000 0
88 1.000 1.000 1.000 1
avg / total 0.950 0.948 0.947 446
Accuracy: 0.9299
precision recall f1-score support
40 0.982 0.982 0.982 56
41 1.000 0.950 0.974 20
42 1.000 1.000 1.000 11
43 0.956 0.860 0.905 50
44 1.000 1.000 1.000 11
45 1.000 0.989 0.995 187
46 1.000 1.000 1.000 22
47 0.967 0.983 0.975 119
48 0.991 0.982 0.986 332
49 0.980 0.980 0.980 101
50 1.000 0.989 0.994 267
51 0.933 0.966 0.949 29
52 0.941 0.991 0.965 322
53 0.957 0.833 0.891 108
54 0.941 0.972 0.956 246
55 0.968 0.988 0.978 243
56 0.994 0.988 0.991 169
57 0.943 0.956 0.949 275
58 0.908 0.885 0.896 78
59 0.957 0.947 0.952 374
60 0.966 0.971 0.969 175
61 0.949 0.962 0.956 291
62 0.932 0.945 0.939 291
63 0.892 0.688 0.776 48
64 0.952 0.958 0.955 309
65 0.958 0.958 0.958 72
66 0.939 0.959 0.949 97
67 0.949 0.932 0.940 161
68 0.968 0.833 0.896 36
69 0.964 0.977 0.971 222
70 0.848 0.875 0.862 32
71 0.881 0.881 0.881 42
72 0.821 0.852 0.836 54
73 0.926 0.758 0.833 33
74 0.851 0.913 0.881 69
75 1.000 1.000 1.000 13
76 1.000 1.000 1.000 13
77 1.000 1.000 1.000 6
78 1.000 1.000 1.000 21
79 1.000 1.000 1.000 9
80 1.000 1.000 1.000 3
81 1.000 0.667 0.800 3
82 1.000 1.000 1.000 3
83 1.000 1.000 1.000 9
84 1.000 1.000 1.000 3
85 0.000 0.000 0.000 0
86 0.000 0.000 0.000 0
87 0.000 0.000 0.000 0
88 1.000 1.000 1.000 3
avg / total 0.957 0.956 0.956 5038