In [1]:
import torch
import torch.nn as nn
import torch.nn.functional as F
from collections import OrderedDict
In [29]:
class _FirstConv(nn.Sequential):
def __init__(self, num_input_features):
super(_FirstConv, self).__init__()
self.add_module('conv0', nn.Conv2d(3, num_input_features, kernel_size=7, stride=2, padding=3, bias=False))
self.add_module('norm0', nn.BatchNorm2d(num_input_features))
self.add_module('relu0', nn.ReLU(inplace=True))
self.add_module('pool0', nn.MaxPool2d(kernel_size=3, stride=2, padding=1))
In [30]:
# Test
conv1 = _FirstConv(5)
In [31]:
class _DenseLayer(nn.Sequential):
def __init__(self, num_input_features, growth_rate, bn_size, drop_rate):
super(_DenseLayer, self).__init__()
self.add_module('norm.1', nn.BatchNorm2d(num_input_features)),
self.add_module('relu.1', nn.ReLU(inplace=True)),
self.add_module('conv.1', nn.Conv2d(num_input_features, bn_size *
growth_rate, kernel_size=1, stride=1, bias=False)),
self.add_module('norm.2', nn.BatchNorm2d(bn_size * growth_rate)),
self.add_module('relu.2', nn.ReLU(inplace=True)),
self.add_module('conv.2', nn.Conv2d(bn_size * growth_rate, growth_rate,
kernel_size=3, stride=1, padding=1, bias=False)),
self.drop_rate = drop_rate
def forward(self, x):
new_features = super(_DenseLayer, self).forward(x)
if self.drop_rate > 0:
new_features = F.dropout(new_features, p=self.drop_rate, training=self.training)
return torch.cat([x, new_features], 1)
In [32]:
# Test
dense1 = _DenseLayer(5,3,1,.5)
In [33]:
class _DenseBlock(nn.Sequential):
def __init__(self, num_layers, num_input_features, bn_size, growth_rate, drop_rate):
super(_DenseBlock, self).__init__()
for i in range(num_layers):
layer = _DenseLayer(num_input_features + i * growth_rate, growth_rate, bn_size, drop_rate)
self.add_module('denselayer%d' % (i + 1), layer)
In [34]:
# Test
denseBlock1 = _DenseBlock(4,4,1,4,.5)
In [35]:
class _TransitionUp(nn.Sequential):
def __init__(self, num_input_features, num_output_features):
super(_TransitionUp, self).__init__()
self.add_module('norm', nn.BatchNorm2d(num_input_features))
self.add_module('relu', nn.ReLU(inplace=True))
self.add_module('conv', nn.Conv2d(num_input_features, num_output_features,
kernel_size=1, stride=1, bias=False))
self.add_module('pool', nn.AvgPool2d(kernel_size=2, stride=2))
In [36]:
# Test
transUp = _TransitionUp(5,10)
In [37]:
class _TransitionDown(nn.Sequential):
def __init__(self, num_input_features, num_output_features):
super(_TransitionDown, self).__init__()
self.add_module('norm', nn.BatchNorm2d(num_input_features))
self.add_module('relu', nn.ReLU(inplace=True))
self.add_module('conv', nn.Conv2d(num_input_features, num_output_features,
kernel_size=1, stride=1, bias=False))
self.add_module('pool', nn.AvgPool2d(kernel_size=2, stride=2))
In [38]:
# Test
transDown = _TransitionDown(5,10)
In [45]:
class FCDenseNet(nn.Module):
r"""FC-DenseNet model class, based on
`"The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation" <https://arxiv.org/pdf/1611.09326>`
Args:
growth_rate (int) - how many filters to add each layer (`k` in paper)
block_config (list of 4 ints) - how many layers in each pooling block
num_init_features (int) - the number of filters to learn in the first convolution layer
bn_size (int) - multiplicative factor for number of bottle neck layers
(i.e. bn_size * k features in the bottleneck layer)
drop_rate (float) - dropout rate after each dense layer
num_classes (int) - number of classification classes
"""
def __init__(self, growth_rate=32, block_config=(6, 12, 24, 16),
num_init_features=64, bn_size=4, drop_rate=0, num_classes=1000):
super(FCDenseNet, self).__init__()
self.features = nn.Sequential()
self.features.add_module('firstConv', _FirstConv(num_init_features))
# Each denseblock
num_features = num_init_features
for i, num_layers in enumerate(block_config):
block = _DenseBlock(num_layers=num_layers, num_input_features=num_features,
bn_size=bn_size, growth_rate=growth_rate, drop_rate=drop_rate)
self.features.add_module('denseblock%d' % (i + 1), block)
num_features = num_features + num_layers * growth_rate
if i != len(block_config) - 1:
trans = _Transition(num_input_features=num_features, num_output_features=num_features // 2)
self.features.add_module('transition%d' % (i + 1), trans)
num_features = num_features // 2
# Final batch norm
self.features.add_module('norm5', nn.BatchNorm2d(num_features))
# Linear layer
self.classifier = nn.Linear(num_features, num_classes)
def forward(self, x):
features = self.features(x)
out = F.relu(features, inplace=True)
out = F.avg_pool2d(out, kernel_size=7).view(features.size(0), -1)
out = self.classifier(out)
return out
In [46]:
# Test
model = FCDenseNet()
In [ ]: