An example fastpages notebook
See fastpages/_notebooks/README.md for a detailed explanation on how to use notebooks with fastpages. This notebook is a demonstration of some of fastpages's capabilities with notebooks
With fastpages you can save your jupyter notebooks into the _notebooks folder at the root of your repository, and they will be automatically be converted to Jekyll compliant blog posts!
put a #hide flag at the top of any cell you want to completely hide in the docs
In [1]:
    
#hide
import pandas as pd
import altair as alt
    
Charts made with Altair remain interactive. Example charts taken from this repo, specifically this notebook.
In [2]:
    
# hide
cars = 'https://vega.github.io/vega-datasets/data/cars.json'
movies = 'https://vega.github.io/vega-datasets/data/movies.json'
sp500 = 'https://vega.github.io/vega-datasets/data/sp500.csv'
stocks = 'https://vega.github.io/vega-datasets/data/stocks.csv'
flights = 'https://vega.github.io/vega-datasets/data/flights-5k.json'
    
In [3]:
    
# hide
df = pd.read_json(movies) # load movies data
genres = df['Major_Genre'].unique() # get unique field values
genres = list(filter(lambda d: d is not None, genres)) # filter out None values
genres.sort() # sort alphabetically
    
In [4]:
    
#hide
mpaa = ['G', 'PG', 'PG-13', 'R', 'NC-17', 'Not Rated']
    
In [5]:
    
# single-value selection over [Major_Genre, MPAA_Rating] pairs
# use specific hard-wired values as the initial selected values
selection = alt.selection_single(
    name='Select',
    fields=['Major_Genre', 'MPAA_Rating'],
    init={'Major_Genre': 'Drama', 'MPAA_Rating': 'R'},
    bind={'Major_Genre': alt.binding_select(options=genres), 'MPAA_Rating': alt.binding_radio(options=mpaa)}
)
  
# scatter plot, modify opacity based on selection
alt.Chart(movies).mark_circle().add_selection(
    selection
).encode(
    x='Rotten_Tomatoes_Rating:Q',
    y='IMDB_Rating:Q',
    tooltip='Title:N',
    opacity=alt.condition(selection, alt.value(0.75), alt.value(0.05))
)
    
    Out[5]:
In [6]:
    
brush = alt.selection_interval(
    encodings=['x'] # limit selection to x-axis (year) values
)
# dynamic query histogram
years = alt.Chart(movies).mark_bar().add_selection(
    brush
).encode(
    alt.X('year(Release_Date):T', title='Films by Release Year'),
    alt.Y('count():Q', title=None)
).properties(
    width=650,
    height=50
)
# scatter plot, modify opacity based on selection
ratings = alt.Chart(movies).mark_circle().encode(
    x='Rotten_Tomatoes_Rating:Q',
    y='IMDB_Rating:Q',
    tooltip='Title:N',
    opacity=alt.condition(brush, alt.value(0.75), alt.value(0.05))
).properties(
    width=650,
    height=400
)
alt.vconcat(years, ratings).properties(spacing=5)
    
    Out[6]:
In [7]:
    
alt.Chart(movies).mark_circle().add_selection(
    alt.selection_interval(bind='scales', encodings=['x'])
).encode(
    x='Rotten_Tomatoes_Rating:Q',
    y=alt.Y('IMDB_Rating:Q', axis=alt.Axis(minExtent=30)), # use min extent to stabilize axis title placement
    tooltip=['Title:N', 'Release_Date:N', 'IMDB_Rating:Q', 'Rotten_Tomatoes_Rating:Q']
).properties(
    width=600,
    height=400
)
    
    Out[7]:
In [8]:
    
# select a point for which to provide details-on-demand
label = alt.selection_single(
    encodings=['x'], # limit selection to x-axis value
    on='mouseover',  # select on mouseover events
    nearest=True,    # select data point nearest the cursor
    empty='none'     # empty selection includes no data points
)
# define our base line chart of stock prices
base = alt.Chart().mark_line().encode(
    alt.X('date:T'),
    alt.Y('price:Q', scale=alt.Scale(type='log')),
    alt.Color('symbol:N')
)
alt.layer(
    base, # base line chart
    
    # add a rule mark to serve as a guide line
    alt.Chart().mark_rule(color='#aaa').encode(
        x='date:T'
    ).transform_filter(label),
    
    # add circle marks for selected time points, hide unselected points
    base.mark_circle().encode(
        opacity=alt.condition(label, alt.value(1), alt.value(0))
    ).add_selection(label),
    # add white stroked text to provide a legible background for labels
    base.mark_text(align='left', dx=5, dy=-5, stroke='white', strokeWidth=2).encode(
        text='price:Q'
    ).transform_filter(label),
    # add text labels for stock prices
    base.mark_text(align='left', dx=5, dy=-5).encode(
        text='price:Q'
    ).transform_filter(label),
    
    data=stocks
).properties(
    width=700,
    height=400
)
    
    Out[8]:
{% twitter https://twitter.com/jakevdp/status/1204765621767901185?s=20 %}
{% youtube "https://youtu.be/XfoYk_Z5AkI" %}
In [ ]: