In [9]:
# input:
A = matrix([
[1, -1, 2],
[-1, 1, 2],
[2, 2, -2]
])
#
In [10]:
V = []
EW = []
i = 0
for x in A.eigenvectors_left():
for y in x[1]:
EW.append(x[0])
show(LatexExpr(r"\lambda_{} = ".format(i)), x[0])
V.append(vector([val for val in y]))
show(LatexExpr(r"v_{} = ".format(i)), y)
i += 1
In [11]:
# optional input: EW, V if chosen in different order
#EW = []
V = [
vector([-1, -1, 2]),
vector([2,0,1]),
vector([-1,1,0]),
]
Orthonormalisieren mit Gram-Schmidt Verfahren
$$ w_1 = \frac{1}{\| v_1 \|} v_1 $$$$ u_i = v_i - \sum_{k=1}^{i-1} \langle v_i, w_k \rangle w_k $$$$ w_i = \frac{1}{\| u_i \|} u_i $$
In [12]:
W = []
U = []
W.append((1/(V[0].norm())) * V[0])
show(LatexExpr("v_0 ="), V[0])
show(LatexExpr("w_0 ="), W[0])
print
for i, v in enumerate(V[1:]):
show(LatexExpr("v_{} =".format(i+1)), v)
s = sum([(v.dot_product(w) * w) for w in W])
u = v - s
show(LatexExpr("u_{} =".format(i+1)), u)
U.append(u)
w = (1/u.norm()) * u
show(LatexExpr("w_{} =".format(i+1)), w)
W.append(w)
print
In [13]:
Q = matrix(W).T
show(Q)
In [14]:
D = Q.T * A *Q
show(D)
In [15]:
assert D.ncols() == D.nrows(), "not a n x n matrix!"
for i in range(D.ncols()):
assert D[i,i] == EW[i], "D[{1},{1}] != EW[{1}]".format(i)