In [1]:
# code for loading the format for the notebook
import os
# path : store the current path to convert back to it later
path = os.getcwd()
os.chdir(os.path.join('..', 'notebook_format'))
from formats import load_style
load_style(plot_style=False)
Out[1]:
In [2]:
os.chdir(path)
# 1. magic to print version
# 2. magic so that the notebook will reload external python modules
%load_ext watermark
%load_ext autoreload
%autoreload 2
import numpy as np
import pandas as pd
import keras.backend as K
from keras.datasets import mnist
from keras.utils import np_utils
from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D
from keras.layers import Dense, Activation, Flatten
%watermark -a 'Ethen' -d -t -v -p numpy,pandas,keras
In [3]:
# loading the mnist dataset as an example
(X_train, y_train), (X_test, y_test) = mnist.load_data()
print('X_train shape:', X_train.shape)
print(X_train.shape[0], 'train samples')
print(X_test.shape[0] , 'test samples')
In [4]:
# input image dimensions
img_rows, img_cols = 28, 28
# load training data and do basic data normalization
(X_train, y_train), (X_test, y_test) = mnist.load_data()
# the keras backend supports two different kind of image data format,
# either channel first or channel last, we can detect it and transform
# our raw data accordingly, if it's channel first, we add another dimension
# to represent the depth (RGB color) at the very beginning (it is 1 here because
# mnist is a grey scale image), if it's channel last, we add it at the end
if K.image_data_format() == 'channels_first':
X_train = X_train.reshape(X_train.shape[0], 1, img_rows, img_cols)
X_test = X_test.reshape(X_test.shape[0], 1, img_rows, img_cols)
input_shape = (1, img_rows, img_cols)
else:
X_train = X_train.reshape(X_train.shape[0], img_rows, img_cols, 1)
X_test = X_test.reshape(X_test.shape[0], img_rows, img_cols, 1)
input_shape = (img_rows, img_cols, 1)
X_train = X_train.astype('float32')
X_test = X_test.astype('float32')
# images takes values between 0 - 255, we can normalize it
# by dividing every number by 255
X_train /= 255
X_test /= 255
print('train shape:', X_train.shape)
In [5]:
# one-hot encode the class (target) vectors
n_class = 10
y_train = np_utils.to_categorical(y_train, n_class)
y_test = np_utils.to_categorical(y_test, n_class)
print('y_train shape:', y_train.shape)
In [6]:
model = Sequential()
# apply a 32 3x3 filters for the first convolutional layer
# then we specify the `padding` to be 'same' so we get
# the same width and height for the input (it will automatically do zero-padding),
# the default stride is 1,
# and since this is the first layer we need to specify the input shape of the image
model.add(Conv2D(32, kernel_size = (3, 3), padding = 'same', input_shape = input_shape))
# some activation function after conv layer
model.add(Activation('relu'))
model.add(Conv2D(64, kernel_size = (3, 3), padding = 'same'))
model.add(Activation('relu'))
# pooling layer, we specify the size of the filters for the pooling layer
# the default `stride` is None, which will default to pool_size
model.add(MaxPooling2D(pool_size = (2, 2)))
# before calling the fully-connected layers, we'll have to flatten it
model.add(Flatten())
model.add(Dense(n_class))
model.add(Activation('softmax'))
model.compile(loss = 'categorical_crossentropy',
optimizer = 'adam',
metrics = ['accuracy'])
n_epoch = 12
batch_size = 2056
model.fit(X_train, y_train,
batch_size = batch_size,
epochs = n_epoch,
verbose = 1,
validation_data = (X_test, y_test))
# evaluating the score, categorical cross entropy error and accuracy
score = model.evaluate(X_test, y_test, verbose = 0)
print('Test score:', score[0])
print('Test accuracy:', score[1])