In [1]:
# Set up Physique for physical constants
import Physique
In [2]:
from Physique import FundamentalPhysicalConstants as FPC
In [3]:
g_0pd = FPC[FPC["Quantity"].str.contains("gravity") ]
# standard acceleration of gravity as a panda DataFrame
print(g_0pd)
In [4]:
g_0 = g_0pd["Value"].values[0]
print(type(g_0))
print(g_0)
In [5]:
# access the values you're interested in
print(g_0pd.Quantity)
print(g_0pd.Value.get_values()[0])
print(g_0pd.Unit.get_values()[0])
In [6]:
from Physique import Conversions
In [7]:
Conversions[Conversions['Toconvertfrom'].str.contains("pound-force ")]
Out[7]:
In [8]:
Conversions[Conversions['to'].str.contains("newton ")]
Out[8]:
In [9]:
lbf2N = Conversions.loc[340,:];
print(lbf2N)
In [10]:
print(lbf2N.Toconvertfrom)
print(lbf2N.to)
print(lbf2N.Multiplyby)
In [33]:
Conversions[Conversions['Toconvertfrom'].str.contains("foot ")];
In [34]:
ft_to_m = Conversions.loc[340,:];
print(ft_to_m)
In [38]:
Conversions[Conversions['Toconvertfrom'].str.contains("mile ")];
In [37]:
mi_to_km = Conversions.loc[271,:];
print(mi_to_km)
In [39]:
mph_to_m_per_s = Conversions.loc[277,:];
print(mph_to_m_per_s)
In [43]:
Conversions[Conversions['to'].str.contains("meter per ")];
In [42]:
ft_per_s2_to_m_per_s2 = Conversions.loc[173,:];
print(ft_per_s2_to_m_per_s2)
In [57]:
Conversions[Conversions['to'].str.contains("kilogram") & Conversions['Toconvertfrom'].str.contains("pound")]
Out[57]:
In [68]:
lbm_to_kg = Conversions.loc[334,:];
print(lbm_to_kg)
In [60]:
F_avg_thrust_USC = 73500 # lbf; USC = United States Customary units
In [61]:
I_s_RP1 = 353 # secs., max I_sp, https://en.wikipedia.org/wiki/RP-1
In [62]:
F_avg_thrust_SI = F_avg_thrust_USC * lbf2N.Multiplyby
print(F_avg_thrust_SI)
In [63]:
m_dot_propellant_expelled_avg_SI = F_avg_thrust_SI / (I_s_RP1 * g_0)
print(m_dot_propellant_expelled_avg_SI)
In [64]:
T_burn = 3 * 60
In [65]:
m_propellant_tot_SI = m_dot_propellant_expelled_avg_SI * T_burn
print(m_propellant_tot_SI)
In [66]:
F_avg_thrust_USC = 5000 # lbf; USC = United States Customary units
F_avg_thrust_SI = F_avg_thrust_USC * lbf2N.Multiplyby
print(F_avg_thrust_SI)
m_dot_propellant_expelled_avg_SI = F_avg_thrust_SI / (I_s_RP1 * g_0)
print(m_dot_propellant_expelled_avg_SI)
T_burn = 6 * 60
m_propellant_tot_SI = m_dot_propellant_expelled_avg_SI * T_burn
print(m_propellant_tot_SI)
In [69]:
M_0_lbm = 57000
M_0_SI = M_0_lbm * lbm_to_kg.Multiplyby
print(M_0_SI)
In [70]:
25854 - (17000 + 2313)
Out[70]:
In [71]:
6541 / 25854.
Out[71]:
In [72]:
print(650 * lbm_to_kg.Multiplyby)
print(1100 * lbm_to_kg.Multiplyby)
In [73]:
(6541 - 295) / (25854 - 295)
Out[73]:
In [74]:
(6541 - 500) / (25854 - 500)
Out[74]:
In [75]:
6541 / (25854 - 295)
Out[75]:
In [ ]: