cf. David Darmofal. 16.901 Computational Methods in Aerospace Engineering, Spring 2005. (Massachusetts Institute of Technology: MIT OpenCourseWare), http://ocw.mit.edu (Accessed 22 May, 2016). License: Creative Commons BY-NC-SA
In [2]:
import sympy
m_p, g = sympy.symbols('m_p g', real=True)
In [3]:
t = sympy.Symbol('t',real=True)
In [4]:
u = sympy.Function('u')(t)
D = sympy.Function('D')(u)
In [26]:
SphFreeFall = sympy.Eq(m_p*sympy.diff(u,t),m_p*g - D)
sympy.pprint( SphFreeFall )
For low speeds,
In [18]:
rho_g, mu_g = sympy.symbols("rho_g mu_g",real=True)
# density and dynamic viscosity of the atmosphere,
In [19]:
a = sympy.symbols("a",real=True)
In [20]:
Re = 2*rho_g*u*a/mu_g
In [23]:
C_D = 24./Re + 6./(1. + sympy.sqrt(Re)) + 0.4
In [24]:
Dlow = 0.5*rho_g*sympy.pi*a**2*u**2*C_D
In [25]:
Dlow
Out[25]:
In [28]:
sympy.pprint( SphFreeFall.subs( D, Dlow) )
In [ ]: