In [135]:
source("https://raw.githubusercontent.com/eogasawara/mylibrary/master/myPreprocessing.R")
source("https://raw.githubusercontent.com/eogasawara/mylibrary/master/myPrediction.R")
In [136]:
load(url("https://github.com/eogasawara/mylibrary/raw/master/data/iris.RData"))
head(iris)
In [137]:
iris_tt = sample.random(iris)
iris_train = iris_tt[[1]]
iris_test = iris_tt[[2]]
tbl <- rbind(table(iris$Species), table(iris_train$Species), table(iris_test$Species))
rownames(tbl) <- c("dataset", "training", "test")
head(tbl)
In [138]:
model <- ZeroRule_model <- class_ZeroRule(iris_train, "Species")
head(model$train$metrics)
Prediction using Zero Rule
In [139]:
test <- ZeroRule_test <- class_test(model, iris_test, "Species")
head(test$predictions)
Quality of prediction using Zero Rule
In [140]:
head(test$metrics)
Confusion matrix
In [141]:
head(test$conf_mat)
In [142]:
model <- tree_model <- class_tree(iris_train, "Species")
head(model$train$metrics)
test <- class_test(model, iris_test, "Species")
head(test$metrics)
head(test$conf_mat)
Understing the produced model. Take a time comparing with the exploratory analysis.
In [143]:
plot_size(5, 4)
plot(tree_model$model)
text(tree_model$model)
In [144]:
model <- nb_model <- class_naiveBayes(iris_train, "Species")
head(model$train$metrics)
test <- class_test(model, iris_test, "Species")
head(test$metrics)
head(test$conf_mat)
In [145]:
print(nb_model$model)
In [146]:
model <- rf_model <- class_randomForest(iris_train, "Species")
head(model$train$metrics)
test <- class_test(model, iris_test, "Species")
head(test$metrics)
head(test$conf_mat)
In [147]:
iris_train_n <- normalize.minmax(iris_train)
iris_train_n$data$Class <- iris_train$Class
iris_test_n <- normalize.minmax(iris_test, iris_train_n$norm.set)
iris_test_n$data$Class <- iris_test$Class
In [148]:
model <- mlp_nnet_model <- class_mlp_nnet(iris_train_n$data, "Species")
head(model$train$metrics)
test <- mlp_nnet_test <- class_test(model, iris_test_n$data, "Species")
head(test$metrics)
head(test$conf_mat)
In [149]:
model <- mlp_rsnns_model <- class_mlp_RSNNS(iris_train_n$data, "Species")
head(model$train$metrics)
test <- class_test(model, iris_test_n$data, "Species")
head(test$metrics)
head(test$conf_mat)
In [150]:
model <- rbf_rsnns_model <- class_rbf_RSNNS(iris_train_n$data, "Species")
head(model$train$metrics)
test <- class_test(model, iris_test_n$data, "Species")
head(test$metrics)
head(test$conf_mat)
In [151]:
model <- svm_rbf_model <- class_svm_rbf(iris_train_n$data, "Species")
head(model$train$metrics)
test <- class_test(model, iris_test_n$data, "Species")
head(test$metrics)
head(test$conf_mat)
In [152]:
model <- svm_poly_model <- class_svm_poly(iris_train_n$data, "Species")
head(model$train$metrics)
test <- class_test(model, iris_test_n$data, "Species")
head(test$metrics)
head(test$conf_mat)
In [153]:
model <- svm_sigmoid_model <-class_svm_sigmoid(iris_train_n$data, "Species")
head(model$train$metrics)
test <- class_test(model, iris_test_n$data, "Species")
head(test$metrics)
head(test$conf_mat)
In [154]:
model <- knn_model <-class_knn(iris_train_n$data, "Species", k=3)
head(model$train$metrics)
test <- class_test(model, iris_test_n$data, "Species")
head(test$metrics)
head(test$conf_mat)
In [156]:
plot_size(4, 3)
zr_rocr <- compute_rocr(ZeroRule_test$predictions, ZeroRule_test$values)
plot(zr_rocr)
mlp_nnet_rocr <- compute_rocr(mlp_nnet_test$predictions, ZeroRule_test$values)
plot(mlp_nnet_rocr)
In [ ]:
In [ ]: