Modern wide field surveys are generating very large databases of automatically measured objects, whose error properties may not be well understood. Fast machine learning algorithms have been proved to be very useful in such a regime.
Let's investigate the SDSS photometric object catalog, and look for machine learning solutions to the following two problems:
Estimating the redshifts of quasars from their photometry (regression)
Selecting quasars from a background of stars and galaxies (classification)
From the SDSS Sky Server we've downloaded two types of photometry (aperature and petrosian), corrected for extinction, for a number of sources with redshifts. Here's the SQL for an example query, that gets us 10000 example quasars:
SELECT *,dered_u - mag_u AS diff_u, dered_g - mag_g AS diff_g, dered_r - mag_r AS diff_g, dered_i - mag_i AS diff_i, dered_z - mag_z AS diff_z from (SELECT top 10000 objid, ra, dec, dered_u,dered_g,dered_r,dered_i,dered_z,psfmag_u-extinction_u AS mag_u, psfmag_g-extinction_g AS mag_g, psfmag_r-extinction_r AS mag_r, psfmag_i-extinction_i AS mag_i,psfmag_z-extinction_z AS mag_z,z AS spec_z,dered_u - dered_g AS u_g_color, dered_g - dered_r AS g_r_color,dered_r - dered_i AS r_i_color,dered_i - dered_z AS i_z_color,class FROM SpecPhoto WHERE (class = 'QSO') ) as sp
We've got 1000 stars and 1000 galaxies as well, and saved them for convenience.
In [1]:
# For pretty plotting
# !pip install --upgrade seaborn
In [2]:
import pandas as pd
pd.set_option('display.max_columns', None)
%pylab inline
import seaborn as sns
sns.set()
import copy
from __future__ import print_function
Populating the interactive namespace from numpy and matplotlib
In [3]:
qsos = pd.read_csv("data/qso10000.csv",index_col=0,usecols=["objid","dered_r","spec_z","u_g_color",\
"g_r_color","r_i_color","i_z_color","diff_u",\
"diff_g1","diff_i","diff_z"])
# Clean out extreme colors and bad magnitudes:
qsos = qsos[(qsos["dered_r"] > -9999) & (qsos["g_r_color"] > -10) & (qsos["g_r_color"] < 10)]
# Response variables: redshift
qso_redshifts = qsos["spec_z"]
# Features or attributes: photometric measurements
qso_features = copy.copy(qsos)
del qso_features["spec_z"]
qso_features.head()
Out[3]:
dered_r
u_g_color
g_r_color
r_i_color
i_z_color
diff_u
diff_g1
diff_i
diff_z
objid
1237648720142532813
19.25328
0.331583
0.058027
0.099751
0.020077
-0.073151
-0.074903
-0.094942
-0.079136
1237658425156829371
19.16626
0.047575
0.181847
0.234743
-0.128612
-0.007589
-0.017090
-0.010700
-0.020636
1237660413189095710
18.70672
0.214582
0.182318
0.121645
-0.028202
-0.007397
0.002148
0.006218
-0.012548
1237660412651962520
19.52941
0.136745
0.222052
-0.120590
0.125301
0.001118
-0.005716
-0.020527
0.022139
1237658493336944662
18.15901
0.052462
0.247498
0.387709
0.011444
-0.098282
-0.244150
-0.238779
-0.271137
In [4]:
bins = hist(qso_redshifts.values,bins=100) ; xlabel("redshift") ; ylabel("N")
Out[4]:
<matplotlib.text.Text at 0x109813f10>
Pretty clearly a big cut at around $z=2$.
Let's plot all the features, colored by the target redshift, to look for structure.
In [5]:
import matplotlib as mpl
import matplotlib.cm as cm
# Truncate the color at z=2.5 just to keep some contrast.
norm = mpl.colors.Normalize(vmin=min(qso_redshifts.values), vmax=2.5)
cmap = cm.jet_r
m = cm.ScalarMappable(norm=norm, cmap=cmap)
# Plot everything against everything else:
rez = pd.scatter_matrix(qso_features[0:2000],alpha=0.2,figsize=[15,15],color=m.to_rgba(qso_redshifts.values))
/Users/pjm/lsst/DarwinX86/anaconda/2.1.0-4-g35ca374/lib/python2.7/site-packages/matplotlib/collections.py:590: FutureWarning: elementwise comparison failed; returning scalar instead, but in the future will perform elementwise comparison
if self._edgecolors == str('face'):
Now we have our machine learning inputs and outputs:
In [6]:
X = qso_features.values # Data: 9-d feature space
y = qso_redshifts.values # Target: redshifts
In [7]:
print("Design matrix shape =", X.shape)
print("Response variable vector shape =", y.shape)
Design matrix shape = (9988, 9)
Response variable vector shape = (9988,)
In [8]:
from sklearn.cross_validation import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y)
Let's follow the same procedure as in the SciKit-Learn
tutorial we just went through:
In [9]:
from sklearn import linear_model
linear = linear_model.LinearRegression()
# Fit the model, using all the attributes:
linear.fit(X_train, y_train)
# Do the prediction on the test data:
y_lr_pred = linear.predict(X_test)
# How well did we do?
from sklearn.metrics import mean_squared_error
mse_linear = np.sqrt(mean_squared_error(y_test,y_lr_pred))
r2_linear = linear.score(X_test, y_test)
print("Linear regression: MSE = ",mse_linear)
print("R2 score =",r2_linear)
Linear regression: MSE = 0.667932552349
R2 score = 0.234662212458
In [10]:
plot(y_test,y_lr_pred - y_test,'o',alpha=0.2)
title("Linear Regression Residuals - MSE = %.2f" % mse_linear)
xlabel("Spectroscopic Redshift")
ylabel("Residual")
hlines(0,min(y_test),max(y_test),color="red")
Out[10]:
<matplotlib.collections.LineCollection at 0x112f19c50>
Just how bad is this? Here's the MSE from guessing the average redshift of the training set for all new objects:
In [11]:
print("Naive MSE", ((1./len(y_train))*(y_train - y_train.mean())**2).sum())
print("Linear regression: MSE = ",mse_linear)
Naive MSE 0.620004332607
Linear regression: MSE = 0.667932552349
In [12]:
mean_squared_error?
In [13]:
from sklearn import neighbors
from sklearn import preprocessing
X_scaled = preprocessing.scale(X) # Many methods work better on scaled X.
KNN = neighbors.KNeighborsRegressor(5)
X_train, X_test, y_train, y_test = train_test_split(X_scaled, y)
KNN.fit(X_train,y_train)
Out[13]:
KNeighborsRegressor(algorithm='auto', leaf_size=30, metric='minkowski',
metric_params=None, n_neighbors=5, p=2, weights='uniform')
In [14]:
y_knn_pred = KNN.predict(X_test)
mse_knn = mean_squared_error(y_test,y_knn_pred)
r2_knn = KNN.score(X_test, y_test)
print("MSE (KNN) =", mse_knn)
print("R2 score (KNN) =",r2_knn)
print("cf.")
print("MSE (linear regression) = ",mse_linear)
print("R2 score (linear regression) =",r2_linear)
MSE (KNN) = 0.237330956504
R2 score (KNN) = 0.604993461373
cf.
MSE (linear regression) = 0.667932552349
R2 score (linear regression) = 0.234662212458
In [15]:
plot(y_test, y_knn_pred - y_test,'o',alpha=0.2)
title("k-NN Residuals - MSE = %.2f" % mse_knn)
xlabel("Spectroscopic Redshift")
ylabel("Residual")
hlines(0,min(y_test),max(y_test),color="red")
Out[15]:
<matplotlib.collections.LineCollection at 0x10c654e90>
Let's vary the control parameters of the KNN model, to see how good we can make our predictions.
We can see our options in the model repr
:
KNeighborsRegressor(algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_neighbors=5, p=2, weights='uniform')
In [16]:
# We'll vary the number of neighbors used:
param_name = "n_neighbors"
param_range = np.array([1,2,4,8,16,32,64])
# And we'll need a cv iterator:
from sklearn.cross_validation import ShuffleSplit
shuffle_split = ShuffleSplit(len(X), 10, test_size=0.4)
# Compute our cv scores for a range of the no. of neighbors:
from sklearn.learning_curve import validation_curve
training_scores, validation_scores = validation_curve(KNN, X_scaled, y,
param_name=param_name,
param_range=param_range,
cv=shuffle_split, scoring='r2')
In [17]:
def plot_validation_curve(param_name,parameter_values, training_scores, validation_scores):
training_scores_mean = np.mean(training_scores, axis=1)
training_scores_std = np.std(training_scores, axis=1)
validation_scores_mean = np.mean(validation_scores, axis=1)
validation_scores_std = np.std(validation_scores, axis=1)
plt.fill_between(parameter_values, training_scores_mean - training_scores_std,
training_scores_mean + training_scores_std, alpha=0.1, color="r")
plt.fill_between(parameter_values, validation_scores_mean - validation_scores_std,
validation_scores_mean + validation_scores_std, alpha=0.1, color="g")
plt.plot(parameter_values, training_scores_mean, 'o-', color="r",
label="Training score")
plt.plot(parameter_values, validation_scores_mean, 'o-', color="g",
label="Cross-validation score")
plt.ylim(validation_scores_mean.min() - .1, training_scores_mean.max() + .1)
plt.xlabel(param_name)
plt.legend(loc="best")
In [18]:
plot_validation_curve(param_name, param_range, training_scores, validation_scores)
In [19]:
param_grid = {'n_neighbors': np.array([1,2,4,8,16,32,64]),
'weights': ['uniform','distance'],
'p' : np.array([1,2])}
np.set_printoptions(suppress=True)
print(param_grid)
{'n_neighbors': array([ 1, 2, 4, 8, 16, 32, 64]), 'weights': ['uniform', 'distance'], 'p': array([1, 2])}
In [20]:
from sklearn.grid_search import GridSearchCV
KNN_tuned = GridSearchCV(KNN, param_grid, verbose=3)
A GridSearchCV
object behaves just like a model, except it carries out a cross-validation while fitting:
In [21]:
KNN_tuned.fit(X_train, y_train)
Fitting 3 folds for each of 28 candidates, totalling 84 fits
[CV] n_neighbors=1, weights=uniform, p=1 .............................
[CV] .... n_neighbors=1, weights=uniform, p=1, score=0.357403 - 0.1s
[CV] n_neighbors=1, weights=uniform, p=1 .............................
[CV] .... n_neighbors=1, weights=uniform, p=1, score=0.403915 - 0.2s
[CV] n_neighbors=1, weights=uniform, p=1 .............................
[CV] .... n_neighbors=1, weights=uniform, p=1, score=0.131532 - 0.1s
[CV] n_neighbors=1, weights=distance, p=1 ............................
[CV] ... n_neighbors=1, weights=distance, p=1, score=0.357403 - 0.2s
[CV] n_neighbors=1, weights=distance, p=1 ............................
[CV] ... n_neighbors=1, weights=distance, p=1, score=0.403915 - 0.2s
[CV] n_neighbors=1, weights=distance, p=1 ............................
[CV] ... n_neighbors=1, weights=distance, p=1, score=0.131532 - 0.1s
[CV] n_neighbors=1, weights=uniform, p=2 .............................
[CV] .... n_neighbors=1, weights=uniform, p=2, score=0.352069 - 0.1s
[CV] n_neighbors=1, weights=uniform, p=2 .............................
[CV] .... n_neighbors=1, weights=uniform, p=2, score=0.371561 - 0.1s
[CV] n_neighbors=1, weights=uniform, p=2 .............................
[CV] .... n_neighbors=1, weights=uniform, p=2, score=0.172690 - 0.1s
[CV] n_neighbors=1, weights=distance, p=2 ............................
[CV] ... n_neighbors=1, weights=distance, p=2, score=0.352069 - 0.1s
[CV] n_neighbors=1, weights=distance, p=2 ............................
[CV] ... n_neighbors=1, weights=distance, p=2, score=0.371561 - 0.1s
[CV] n_neighbors=1, weights=distance, p=2 ............................
[CV] ... n_neighbors=1, weights=distance, p=2, score=0.172690 - 0.1s
[CV] n_neighbors=2, weights=uniform, p=1 .............................
[CV] .... n_neighbors=2, weights=uniform, p=1, score=0.551619 - 0.1s
[CV] n_neighbors=2, weights=uniform, p=1 .............................
[CV] .... n_neighbors=2, weights=uniform, p=1, score=0.463298 - 0.1s
[CV] n_neighbors=2, weights=uniform, p=1 .............................
[CV] .... n_neighbors=2, weights=uniform, p=1, score=0.452333 - 0.2s
[CV] n_neighbors=2, weights=distance, p=1 ............................
[CV] ... n_neighbors=2, weights=distance, p=1, score=0.550940 - 0.2s
[CV] n_neighbors=2, weights=distance, p=1 ............................
[CV] ... n_neighbors=2, weights=distance, p=1, score=0.472627 - 0.2s
[CV] n_neighbors=2, weights=distance, p=1 ............................
[CV] ... n_neighbors=2, weights=distance, p=1, score=0.437479 - 0.1s
[CV] n_neighbors=2, weights=uniform, p=2 .............................
[CV] .... n_neighbors=2, weights=uniform, p=2, score=0.535628 - 0.1s
[CV] n_neighbors=2, weights=uniform, p=2 .............................
[CV] .... n_neighbors=2, weights=uniform, p=2, score=0.437350 - 0.1s
[CV] n_neighbors=2, weights=uniform, p=2 .............................
[CV] .... n_neighbors=2, weights=uniform, p=2, score=0.383269 - 0.1s
[CV] n_neighbors=2, weights=distance, p=2 ............................
[CV] ... n_neighbors=2, weights=distance, p=2, score=0.537428 - 0.1s
[CV] n_neighbors=2, weights=distance, p=2 ............................
[CV] ... n_neighbors=2, weights=distance, p=2, score=0.444366 - 0.1s
[CV] n_neighbors=2, weights=distance, p=2 ............................
[CV] ... n_neighbors=2, weights=distance, p=2, score=0.376589 - 0.1s
[CV] n_neighbors=4, weights=uniform, p=1 .............................
[CV] .... n_neighbors=4, weights=uniform, p=1, score=0.595496 - 0.2s
[CV] n_neighbors=4, weights=uniform, p=1 .............................
[CV] .... n_neighbors=4, weights=uniform, p=1, score=0.529245 - 0.1s
[CV] n_neighbors=4, weights=uniform, p=1 .............................
[CV] .... n_neighbors=4, weights=uniform, p=1, score=0.529336 - 0.1s
[CV] n_neighbors=4, weights=distance, p=1 ............................
[CV] ... n_neighbors=4, weights=distance, p=1, score=0.598830 - 0.1s
[CV] n_neighbors=4, weights=distance, p=1 ............................
[CV] ... n_neighbors=4, weights=distance, p=1, score=0.529063 - 0.1s
[CV] n_neighbors=4, weights=distance, p=1 ............................
[CV] ... n_neighbors=4, weights=distance, p=1, score=0.524274 - 0.1s
[CV] n_neighbors=4, weights=uniform, p=2 .............................
[CV] .... n_neighbors=4, weights=uniform, p=2, score=0.560565 - 0.1s
[CV] n_neighbors=4, weights=uniform, p=2 .............................
[CV] .... n_neighbors=4, weights=uniform, p=2, score=0.489224 - 0.1s
[Parallel(n_jobs=1)]: Done 1 jobs | elapsed: 0.1s
[Parallel(n_jobs=1)]: Done 32 jobs | elapsed: 4.0s
[CV] n_neighbors=4, weights=uniform, p=2 .............................
[CV] .... n_neighbors=4, weights=uniform, p=2, score=0.520538 - 0.1s
[CV] n_neighbors=4, weights=distance, p=2 ............................
[CV] ... n_neighbors=4, weights=distance, p=2, score=0.570498 - 0.1s
[CV] n_neighbors=4, weights=distance, p=2 ............................
[CV] ... n_neighbors=4, weights=distance, p=2, score=0.495222 - 0.1s
[CV] n_neighbors=4, weights=distance, p=2 ............................
[CV] ... n_neighbors=4, weights=distance, p=2, score=0.517041 - 0.1s
[CV] n_neighbors=8, weights=uniform, p=1 .............................
[CV] .... n_neighbors=8, weights=uniform, p=1, score=0.595811 - 0.2s
[CV] n_neighbors=8, weights=uniform, p=1 .............................
[CV] .... n_neighbors=8, weights=uniform, p=1, score=0.541184 - 0.2s
[CV] n_neighbors=8, weights=uniform, p=1 .............................
[CV] .... n_neighbors=8, weights=uniform, p=1, score=0.586996 - 0.2s
[CV] n_neighbors=8, weights=distance, p=1 ............................
[CV] ... n_neighbors=8, weights=distance, p=1, score=0.602491 - 0.2s
[CV] n_neighbors=8, weights=distance, p=1 ............................
[CV] ... n_neighbors=8, weights=distance, p=1, score=0.543922 - 0.3s
[CV] n_neighbors=8, weights=distance, p=1 ............................
[CV] ... n_neighbors=8, weights=distance, p=1, score=0.584555 - 0.2s
[CV] n_neighbors=8, weights=uniform, p=2 .............................
[CV] .... n_neighbors=8, weights=uniform, p=2, score=0.570525 - 0.1s
[CV] n_neighbors=8, weights=uniform, p=2 .............................
[CV] .... n_neighbors=8, weights=uniform, p=2, score=0.508357 - 0.1s
[CV] n_neighbors=8, weights=uniform, p=2 .............................
[CV] .... n_neighbors=8, weights=uniform, p=2, score=0.576102 - 0.1s
[CV] n_neighbors=8, weights=distance, p=2 ............................
[CV] ... n_neighbors=8, weights=distance, p=2, score=0.580921 - 0.2s
[CV] n_neighbors=8, weights=distance, p=2 ............................
[CV] ... n_neighbors=8, weights=distance, p=2, score=0.513792 - 0.2s
[CV] n_neighbors=8, weights=distance, p=2 ............................
[CV] ... n_neighbors=8, weights=distance, p=2, score=0.576138 - 0.2s
[CV] n_neighbors=16, weights=uniform, p=1 ............................
[CV] ... n_neighbors=16, weights=uniform, p=1, score=0.585941 - 0.3s
[CV] n_neighbors=16, weights=uniform, p=1 ............................
[CV] ... n_neighbors=16, weights=uniform, p=1, score=0.532202 - 0.3s
[CV] n_neighbors=16, weights=uniform, p=1 ............................
[CV] ... n_neighbors=16, weights=uniform, p=1, score=0.590489 - 0.3s
[CV] n_neighbors=16, weights=distance, p=1 ...........................
[CV] .. n_neighbors=16, weights=distance, p=1, score=0.595037 - 0.3s
[CV] n_neighbors=16, weights=distance, p=1 ...........................
[CV] .. n_neighbors=16, weights=distance, p=1, score=0.538552 - 0.2s
[CV] n_neighbors=16, weights=distance, p=1 ...........................
[CV] .. n_neighbors=16, weights=distance, p=1, score=0.593095 - 0.3s
[CV] n_neighbors=16, weights=uniform, p=2 ............................
[CV] ... n_neighbors=16, weights=uniform, p=2, score=0.564157 - 0.2s
[CV] n_neighbors=16, weights=uniform, p=2 ............................
[CV] ... n_neighbors=16, weights=uniform, p=2, score=0.504866 - 0.2s
[CV] n_neighbors=16, weights=uniform, p=2 ............................
[CV] ... n_neighbors=16, weights=uniform, p=2, score=0.581961 - 0.2s
[CV] n_neighbors=16, weights=distance, p=2 ...........................
[CV] .. n_neighbors=16, weights=distance, p=2, score=0.575467 - 0.2s
[CV] n_neighbors=16, weights=distance, p=2 ...........................
[CV] .. n_neighbors=16, weights=distance, p=2, score=0.512951 - 0.2s
[CV] n_neighbors=16, weights=distance, p=2 ...........................
[CV] .. n_neighbors=16, weights=distance, p=2, score=0.588203 - 0.2s
[CV] n_neighbors=32, weights=uniform, p=1 ............................
[CV] ... n_neighbors=32, weights=uniform, p=1, score=0.567288 - 0.4s
[CV] n_neighbors=32, weights=uniform, p=1 ............................
[CV] ... n_neighbors=32, weights=uniform, p=1, score=0.508968 - 0.3s
[CV] n_neighbors=32, weights=uniform, p=1 ............................
[CV] ... n_neighbors=32, weights=uniform, p=1, score=0.583185 - 0.3s
[CV] n_neighbors=32, weights=distance, p=1 ...........................
[CV] .. n_neighbors=32, weights=distance, p=1, score=0.578683 - 0.3s
[CV] n_neighbors=32, weights=distance, p=1 ...........................
[CV] .. n_neighbors=32, weights=distance, p=1, score=0.519204 - 0.2s
[CV] n_neighbors=32, weights=distance, p=1 ...........................
[CV] .. n_neighbors=32, weights=distance, p=1, score=0.589722 - 0.3s
[CV] n_neighbors=32, weights=uniform, p=2 ............................
[CV] ... n_neighbors=32, weights=uniform, p=2, score=0.541214 - 0.2s
[CV] n_neighbors=32, weights=uniform, p=2 ............................
[CV] ... n_neighbors=32, weights=uniform, p=2, score=0.489672 - 0.2s
[CV] n_neighbors=32, weights=uniform, p=2 ............................
[CV] ... n_neighbors=32, weights=uniform, p=2, score=0.563721 - 0.2s
[CV] n_neighbors=32, weights=distance, p=2 ...........................
[CV] .. n_neighbors=32, weights=distance, p=2, score=0.554778 - 0.2s
[CV] n_neighbors=32, weights=distance, p=2 ...........................
[CV] .. n_neighbors=32, weights=distance, p=2, score=0.501269 - 0.2s
[CV] n_neighbors=32, weights=distance, p=2 ...........................
[CV] .. n_neighbors=32, weights=distance, p=2, score=0.574300 - 0.1s
[CV] n_neighbors=64, weights=uniform, p=1 ............................
[CV] ... n_neighbors=64, weights=uniform, p=1, score=0.532061 - 0.3s
[CV] n_neighbors=64, weights=uniform, p=1 ............................
[CV] ... n_neighbors=64, weights=uniform, p=1, score=0.472344 - 0.4s
[CV] n_neighbors=64, weights=uniform, p=1 ............................
[CV] ... n_neighbors=64, weights=uniform, p=1, score=0.558500 - 0.3s
[CV] n_neighbors=64, weights=distance, p=1 ...........................
[CV] .. n_neighbors=64, weights=distance, p=1, score=0.548104 - 0.2s
[CV] n_neighbors=64, weights=distance, p=1 ...........................
[CV] .. n_neighbors=64, weights=distance, p=1, score=0.486495 - 0.2s
[CV] n_neighbors=64, weights=distance, p=1 ...........................
[CV] .. n_neighbors=64, weights=distance, p=1, score=0.569642 - 0.3s
[CV] n_neighbors=64, weights=uniform, p=2 ............................
[CV] ... n_neighbors=64, weights=uniform, p=2, score=0.500452 - 0.2s
[CV] n_neighbors=64, weights=uniform, p=2 ............................
[CV] ... n_neighbors=64, weights=uniform, p=2, score=0.462089 - 0.2s
[CV] n_neighbors=64, weights=uniform, p=2 ............................
[CV] ... n_neighbors=64, weights=uniform, p=2, score=0.534302 - 0.4s
[CV] n_neighbors=64, weights=distance, p=2 ...........................
[CV] .. n_neighbors=64, weights=distance, p=2, score=0.518974 - 0.2s
[CV] n_neighbors=64, weights=distance, p=2 ...........................
[CV] .. n_neighbors=64, weights=distance, p=2, score=0.477115 - 0.2s
[CV] n_neighbors=64, weights=distance, p=2 ...........................
[CV] .. n_neighbors=64, weights=distance, p=2, score=0.548888 - 0.2s
[Parallel(n_jobs=1)]: Done 84 out of 84 | elapsed: 15.4s finished
Out[21]:
GridSearchCV(cv=None, error_score='raise',
estimator=KNeighborsRegressor(algorithm='auto', leaf_size=30, metric='minkowski',
metric_params=None, n_neighbors=64, p=2, weights='uniform'),
fit_params={}, iid=True, loss_func=None, n_jobs=1,
param_grid={'n_neighbors': array([ 1, 2, 4, 8, 16, 32, 64]), 'weights': ['uniform', 'distance'], 'p': array([1, 2])},
pre_dispatch='2*n_jobs', refit=True, score_func=None, scoring=None,
verbose=3)
In [22]:
y_knn_tuned_pred = KNN_tuned.predict(X_test)
mse_knn_tuned = mean_squared_error(y_test,y_knn_tuned_pred)
r2_knn_tuned = KNN_tuned.score(X_test, y_test)
print("MSE (tuned KNN) =", mse_knn_tuned)
print("R2 score (tuned KNN) =",r2_knn_tuned)
print("cf.")
print("MSE (KNN) = ",mse_knn)
print("R2 score (KNN) =",r2_knn)
MSE (tuned KNN) = 0.217389157953
R2 score (tuned KNN) = 0.63818399385
cf.
MSE (KNN) = 0.237330956504
R2 score (KNN) = 0.604993461373
Which are the best KNN control parameters we found?
In [23]:
KNN_tuned.best_params_
Out[23]:
{'n_neighbors': 8, 'p': 1, 'weights': 'distance'}
This value of n_neighbors
is consistent with the peak in cross-validation score in the validation curve plot.
Notice that all the above tuning happened while training on a single split (X_train
and y_train
).
It's possible that that particular fold prefers a slightly different set of parameters than a different one - so to assess our generalization error, we need a further level of cross-validation.
We can do this by passing a GridSearchCV
model to the cross validation score calculator. This will take a few moments, as the grid search is carried out for each CV fold...
In [24]:
from sklearn.cross_validation import cross_val_score
R2 = cross_val_score(KNN_tuned, X_scaled, y, cv=shuffle_split, scoring='r2')
Fitting 3 folds for each of 28 candidates, totalling 84 fits
[CV] n_neighbors=1, weights=uniform, p=1 .............................
[CV] .... n_neighbors=1, weights=uniform, p=1, score=0.391208 - 0.1s
[CV] n_neighbors=1, weights=uniform, p=1 .............................
[CV] .... n_neighbors=1, weights=uniform, p=1, score=0.261632 - 0.1s
[CV] n_neighbors=1, weights=uniform, p=1 .............................
[CV] .... n_neighbors=1, weights=uniform, p=1, score=0.262528 - 0.2s
[CV] n_neighbors=1, weights=distance, p=1 ............................
[CV] ... n_neighbors=1, weights=distance, p=1, score=0.391208 - 0.1s
[CV] n_neighbors=1, weights=distance, p=1 ............................
[CV] ... n_neighbors=1, weights=distance, p=1, score=0.261632 - 0.1s
[CV] n_neighbors=1, weights=distance, p=1 ............................
[CV] ... n_neighbors=1, weights=distance, p=1, score=0.262528 - 0.1s
[CV] n_neighbors=1, weights=uniform, p=2 .............................
[CV] .... n_neighbors=1, weights=uniform, p=2, score=0.252097 - 0.0s
[CV] n_neighbors=1, weights=uniform, p=2 .............................
[CV] .... n_neighbors=1, weights=uniform, p=2, score=0.253272 - 0.1s
[CV] n_neighbors=1, weights=uniform, p=2 .............................
[CV] .... n_neighbors=1, weights=uniform, p=2, score=0.290596 - 0.1s
[CV] n_neighbors=1, weights=distance, p=2 ............................
[CV] ... n_neighbors=1, weights=distance, p=2, score=0.252097 - 0.1s
[CV] n_neighbors=1, weights=distance, p=2 ............................
[CV] ... n_neighbors=1, weights=distance, p=2, score=0.253272 - 0.1s
[CV] n_neighbors=1, weights=distance, p=2 ............................
[CV] ... n_neighbors=1, weights=distance, p=2, score=0.290596 - 0.0s
[CV] n_neighbors=2, weights=uniform, p=1 .............................
[CV] .... n_neighbors=2, weights=uniform, p=1, score=0.507233 - 0.1s
[CV] n_neighbors=2, weights=uniform, p=1 .............................
[CV] .... n_neighbors=2, weights=uniform, p=1, score=0.474264 - 0.1s
[CV] n_neighbors=2, weights=uniform, p=1 .............................
[CV] .... n_neighbors=2, weights=uniform, p=1, score=0.424644 - 0.1s
[CV] n_neighbors=2, weights=distance, p=1 ............................
[CV] ... n_neighbors=2, weights=distance, p=1, score=0.516326 - 0.1s
[CV] n_neighbors=2, weights=distance, p=1 ............................
[CV] ... n_neighbors=2, weights=distance, p=1, score=0.473836 - 0.1s
[CV] n_neighbors=2, weights=distance, p=1 ............................
[CV] ... n_neighbors=2, weights=distance, p=1, score=0.420967 - 0.1s
[CV] n_neighbors=2, weights=uniform, p=2 .............................
[CV] .... n_neighbors=2, weights=uniform, p=2, score=0.454528 - 0.0s
[CV] n_neighbors=2, weights=uniform, p=2 .............................
[CV] .... n_neighbors=2, weights=uniform, p=2, score=0.479844 - 0.1s
[CV] n_neighbors=2, weights=uniform, p=2 .............................
[CV] .... n_neighbors=2, weights=uniform, p=2, score=0.418424 - 0.1s
[CV] n_neighbors=2, weights=distance, p=2 ............................
[CV] ... n_neighbors=2, weights=distance, p=2, score=0.460656 - 0.1s
[CV] n_neighbors=2, weights=distance, p=2 ............................
[CV] ... n_neighbors=2, weights=distance, p=2, score=0.472977 - 0.1s
[CV] n_neighbors=2, weights=distance, p=2 ............................
[CV] ... n_neighbors=2, weights=distance, p=2, score=0.416292 - 0.1s
[CV] n_neighbors=4, weights=uniform, p=1 .............................
[CV] .... n_neighbors=4, weights=uniform, p=1, score=0.584701 - 0.1s
[CV] n_neighbors=4, weights=uniform, p=1 .............................
[CV] .... n_neighbors=4, weights=uniform, p=1, score=0.539520 - 0.1s
[CV] n_neighbors=4, weights=uniform, p=1 .............................
[CV] .... n_neighbors=4, weights=uniform, p=1, score=0.483854 - 0.1s
[CV] n_neighbors=4, weights=distance, p=1 ............................
[CV] ... n_neighbors=4, weights=distance, p=1, score=0.586155 - 0.1s
[CV] n_neighbors=4, weights=distance, p=1 ............................
[CV] ... n_neighbors=4, weights=distance, p=1, score=0.541074 - 0.1s
[CV] n_neighbors=4, weights=distance, p=1 ............................
[CV] ... n_neighbors=4, weights=distance, p=1, score=0.485134 - 0.1s
[CV] n_neighbors=4, weights=uniform, p=2 .............................
[CV] .... n_neighbors=4, weights=uniform, p=2, score=0.562250 - 0.1s
[CV] n_neighbors=4, weights=uniform, p=2 .............................
[CV] .... n_neighbors=4, weights=uniform, p=2, score=0.509001 - 0.1s
[Parallel(n_jobs=1)]: Done 1 jobs | elapsed: 0.1s
[Parallel(n_jobs=1)]: Done 32 jobs | elapsed: 2.9s
[CV] n_neighbors=4, weights=uniform, p=2 .............................
[CV] .... n_neighbors=4, weights=uniform, p=2, score=0.482361 - 0.1s
[CV] n_neighbors=4, weights=distance, p=2 ............................
[CV] ... n_neighbors=4, weights=distance, p=2, score=0.561793 - 0.0s
[CV] n_neighbors=4, weights=distance, p=2 ............................
[CV] ... n_neighbors=4, weights=distance, p=2, score=0.515164 - 0.1s
[CV] n_neighbors=4, weights=distance, p=2 ............................
[CV] ... n_neighbors=4, weights=distance, p=2, score=0.480626 - 0.2s
[CV] n_neighbors=8, weights=uniform, p=1 .............................
[CV] .... n_neighbors=8, weights=uniform, p=1, score=0.613466 - 0.2s
[CV] n_neighbors=8, weights=uniform, p=1 .............................
[CV] .... n_neighbors=8, weights=uniform, p=1, score=0.561134 - 0.3s
[CV] n_neighbors=8, weights=uniform, p=1 .............................
[CV] .... n_neighbors=8, weights=uniform, p=1, score=0.495502 - 0.2s
[CV] n_neighbors=8, weights=distance, p=1 ............................
[CV] ... n_neighbors=8, weights=distance, p=1, score=0.616645 - 0.2s
[CV] n_neighbors=8, weights=distance, p=1 ............................
[CV] ... n_neighbors=8, weights=distance, p=1, score=0.564937 - 0.2s
[CV] n_neighbors=8, weights=distance, p=1 ............................
[CV] ... n_neighbors=8, weights=distance, p=1, score=0.502738 - 0.2s
[CV] n_neighbors=8, weights=uniform, p=2 .............................
[CV] .... n_neighbors=8, weights=uniform, p=2, score=0.579808 - 0.1s
[CV] n_neighbors=8, weights=uniform, p=2 .............................
[CV] .... n_neighbors=8, weights=uniform, p=2, score=0.525561 - 0.1s
[CV] n_neighbors=8, weights=uniform, p=2 .............................
[CV] .... n_neighbors=8, weights=uniform, p=2, score=0.500064 - 0.1s
[CV] n_neighbors=8, weights=distance, p=2 ............................
[CV] ... n_neighbors=8, weights=distance, p=2, score=0.585020 - 0.1s
[CV] n_neighbors=8, weights=distance, p=2 ............................
[CV] ... n_neighbors=8, weights=distance, p=2, score=0.533799 - 0.2s
[CV] n_neighbors=8, weights=distance, p=2 ............................
[CV] ... n_neighbors=8, weights=distance, p=2, score=0.505180 - 0.1s
[CV] n_neighbors=16, weights=uniform, p=1 ............................
[CV] ... n_neighbors=16, weights=uniform, p=1, score=0.607341 - 0.2s
[CV] n_neighbors=16, weights=uniform, p=1 ............................
[CV] ... n_neighbors=16, weights=uniform, p=1, score=0.539833 - 0.2s
[CV] n_neighbors=16, weights=uniform, p=1 ............................
[CV] ... n_neighbors=16, weights=uniform, p=1, score=0.511183 - 0.2s
[CV] n_neighbors=16, weights=distance, p=1 ...........................
[CV] .. n_neighbors=16, weights=distance, p=1, score=0.614454 - 0.1s
[CV] n_neighbors=16, weights=distance, p=1 ...........................
[CV] .. n_neighbors=16, weights=distance, p=1, score=0.547644 - 0.2s
[CV] n_neighbors=16, weights=distance, p=1 ...........................
[CV] .. n_neighbors=16, weights=distance, p=1, score=0.516913 - 0.2s
[CV] n_neighbors=16, weights=uniform, p=2 ............................
[CV] ... n_neighbors=16, weights=uniform, p=2, score=0.587521 - 0.1s
[CV] n_neighbors=16, weights=uniform, p=2 ............................
[CV] ... n_neighbors=16, weights=uniform, p=2, score=0.513392 - 0.1s
[CV] n_neighbors=16, weights=uniform, p=2 ............................
[CV] ... n_neighbors=16, weights=uniform, p=2, score=0.513729 - 0.1s
[CV] n_neighbors=16, weights=distance, p=2 ...........................
[CV] .. n_neighbors=16, weights=distance, p=2, score=0.594310 - 0.1s
[CV] n_neighbors=16, weights=distance, p=2 ...........................
[CV] .. n_neighbors=16, weights=distance, p=2, score=0.524820 - 0.2s
[CV] n_neighbors=16, weights=distance, p=2 ...........................
[CV] .. n_neighbors=16, weights=distance, p=2, score=0.519234 - 0.1s
[CV] n_neighbors=32, weights=uniform, p=1 ............................
[CV] ... n_neighbors=32, weights=uniform, p=1, score=0.590285 - 0.2s
[CV] n_neighbors=32, weights=uniform, p=1 ............................
[CV] ... n_neighbors=32, weights=uniform, p=1, score=0.516045 - 0.3s
[CV] n_neighbors=32, weights=uniform, p=1 ............................
[CV] ... n_neighbors=32, weights=uniform, p=1, score=0.495096 - 0.3s
[CV] n_neighbors=32, weights=distance, p=1 ...........................
[CV] .. n_neighbors=32, weights=distance, p=1, score=0.602143 - 0.2s
[CV] n_neighbors=32, weights=distance, p=1 ...........................
[CV] .. n_neighbors=32, weights=distance, p=1, score=0.526927 - 0.2s
[CV] n_neighbors=32, weights=distance, p=1 ...........................
[CV] .. n_neighbors=32, weights=distance, p=1, score=0.503091 - 0.2s
[CV] n_neighbors=32, weights=uniform, p=2 ............................
[CV] ... n_neighbors=32, weights=uniform, p=2, score=0.560919 - 0.1s
[CV] n_neighbors=32, weights=uniform, p=2 ............................
[CV] ... n_neighbors=32, weights=uniform, p=2, score=0.493508 - 0.1s
[CV] n_neighbors=32, weights=uniform, p=2 ............................
[CV] ... n_neighbors=32, weights=uniform, p=2, score=0.498609 - 0.1s
[CV] n_neighbors=32, weights=distance, p=2 ...........................
[CV] .. n_neighbors=32, weights=distance, p=2, score=0.574167 - 0.1s
[CV] n_neighbors=32, weights=distance, p=2 ...........................
[CV] .. n_neighbors=32, weights=distance, p=2, score=0.506348 - 0.1s
[CV] n_neighbors=32, weights=distance, p=2 ...........................
[CV] .. n_neighbors=32, weights=distance, p=2, score=0.506631 - 0.1s
[CV] n_neighbors=64, weights=uniform, p=1 ............................
[CV] ... n_neighbors=64, weights=uniform, p=1, score=0.553157 - 0.2s
[CV] n_neighbors=64, weights=uniform, p=1 ............................
[CV] ... n_neighbors=64, weights=uniform, p=1, score=0.476909 - 0.2s
[CV] n_neighbors=64, weights=uniform, p=1 ............................
[CV] ... n_neighbors=64, weights=uniform, p=1, score=0.471549 - 0.2s
[CV] n_neighbors=64, weights=distance, p=1 ...........................
[CV] .. n_neighbors=64, weights=distance, p=1, score=0.570638 - 0.3s
[CV] n_neighbors=64, weights=distance, p=1 ...........................
[CV] .. n_neighbors=64, weights=distance, p=1, score=0.491762 - 0.2s
[CV] n_neighbors=64, weights=distance, p=1 ...........................
[CV] .. n_neighbors=64, weights=distance, p=1, score=0.482317 - 0.2s
[CV] n_neighbors=64, weights=uniform, p=2 ............................
[CV] ... n_neighbors=64, weights=uniform, p=2, score=0.524060 - 0.1s
[CV] n_neighbors=64, weights=uniform, p=2 ............................
[CV] ... n_neighbors=64, weights=uniform, p=2, score=0.458055 - 0.1s
[CV] n_neighbors=64, weights=uniform, p=2 ............................
[CV] ... n_neighbors=64, weights=uniform, p=2, score=0.471871 - 0.1s
[CV] n_neighbors=64, weights=distance, p=2 ...........................
[CV] .. n_neighbors=64, weights=distance, p=2, score=0.543155 - 0.1s
[CV] n_neighbors=64, weights=distance, p=2 ...........................
[CV] .. n_neighbors=64, weights=distance, p=2, score=0.474456 - 0.2s
[CV] n_neighbors=64, weights=distance, p=2 ...........................
[CV] .. n_neighbors=64, weights=distance, p=2, score=0.483998 - 0.1s
Fitting 3 folds for each of 28 candidates, totalling 84 fits
[CV] n_neighbors=1, weights=uniform, p=1 .............................
[CV] .... n_neighbors=1, weights=uniform, p=1, score=0.405130 - 0.1s
[Parallel(n_jobs=1)]: Done 84 out of 84 | elapsed: 11.4s finished
[Parallel(n_jobs=1)]: Done 1 jobs | elapsed: 0.1s
[CV] n_neighbors=1, weights=uniform, p=1 .............................
[CV] .... n_neighbors=1, weights=uniform, p=1, score=0.269447 - 0.1s
[CV] n_neighbors=1, weights=uniform, p=1 .............................
[CV] .... n_neighbors=1, weights=uniform, p=1, score=0.365230 - 0.1s
[CV] n_neighbors=1, weights=distance, p=1 ............................
[CV] ... n_neighbors=1, weights=distance, p=1, score=0.405130 - 0.1s
[CV] n_neighbors=1, weights=distance, p=1 ............................
[CV] ... n_neighbors=1, weights=distance, p=1, score=0.269447 - 0.1s
[CV] n_neighbors=1, weights=distance, p=1 ............................
[CV] ... n_neighbors=1, weights=distance, p=1, score=0.365230 - 0.1s
[CV] n_neighbors=1, weights=uniform, p=2 .............................
[CV] .... n_neighbors=1, weights=uniform, p=2, score=0.362118 - 0.0s
[CV] n_neighbors=1, weights=uniform, p=2 .............................
[CV] .... n_neighbors=1, weights=uniform, p=2, score=0.296218 - 0.0s
[CV] n_neighbors=1, weights=uniform, p=2 .............................
[CV] .... n_neighbors=1, weights=uniform, p=2, score=0.409253 - 0.0s
[CV] n_neighbors=1, weights=distance, p=2 ............................
[CV] ... n_neighbors=1, weights=distance, p=2, score=0.362118 - 0.0s
[CV] n_neighbors=1, weights=distance, p=2 ............................
[CV] ... n_neighbors=1, weights=distance, p=2, score=0.296218 - 0.0s
[CV] n_neighbors=1, weights=distance, p=2 ............................
[CV] ... n_neighbors=1, weights=distance, p=2, score=0.409253 - 0.0s
[CV] n_neighbors=2, weights=uniform, p=1 .............................
[CV] .... n_neighbors=2, weights=uniform, p=1, score=0.517125 - 0.1s
[CV] n_neighbors=2, weights=uniform, p=1 .............................
[CV] .... n_neighbors=2, weights=uniform, p=1, score=0.420846 - 0.1s
[CV] n_neighbors=2, weights=uniform, p=1 .............................
[CV] .... n_neighbors=2, weights=uniform, p=1, score=0.547635 - 0.1s
[CV] n_neighbors=2, weights=distance, p=1 ............................
[CV] ... n_neighbors=2, weights=distance, p=1, score=0.519852 - 0.1s
[CV] n_neighbors=2, weights=distance, p=1 ............................
[CV] ... n_neighbors=2, weights=distance, p=1, score=0.419551 - 0.1s
[CV] n_neighbors=2, weights=distance, p=1 ............................
[CV] ... n_neighbors=2, weights=distance, p=1, score=0.548720 - 0.1s
[CV] n_neighbors=2, weights=uniform, p=2 .............................
[CV] .... n_neighbors=2, weights=uniform, p=2, score=0.488770 - 0.1s
[CV] n_neighbors=2, weights=uniform, p=2 .............................
[CV] .... n_neighbors=2, weights=uniform, p=2, score=0.399650 - 0.1s
[CV] n_neighbors=2, weights=uniform, p=2 .............................
[CV] .... n_neighbors=2, weights=uniform, p=2, score=0.534278 - 0.1s
[CV] n_neighbors=2, weights=distance, p=2 ............................
[CV] ... n_neighbors=2, weights=distance, p=2, score=0.491099 - 0.1s
[CV] n_neighbors=2, weights=distance, p=2 ............................
[CV] ... n_neighbors=2, weights=distance, p=2, score=0.402305 - 0.1s
[CV] n_neighbors=2, weights=distance, p=2 ............................
[CV] ... n_neighbors=2, weights=distance, p=2, score=0.535529 - 0.1s
[CV] n_neighbors=4, weights=uniform, p=1 .............................
[CV] .... n_neighbors=4, weights=uniform, p=1, score=0.567191 - 0.2s
[CV] n_neighbors=4, weights=uniform, p=1 .............................
[CV] .... n_neighbors=4, weights=uniform, p=1, score=0.465426 - 0.2s
[CV] n_neighbors=4, weights=uniform, p=1 .............................
[CV] .... n_neighbors=4, weights=uniform, p=1, score=0.602109 - 0.1s
[CV] n_neighbors=4, weights=distance, p=1 ............................
[CV] ... n_neighbors=4, weights=distance, p=1, score=0.568531 - 0.2s
[CV] n_neighbors=4, weights=distance, p=1 ............................
[CV] ... n_neighbors=4, weights=distance, p=1, score=0.469204 - 0.1s
[CV] n_neighbors=4, weights=distance, p=1 ............................
[CV] ... n_neighbors=4, weights=distance, p=1, score=0.605193 - 0.1s
[CV] n_neighbors=4, weights=uniform, p=2 .............................
[CV] .... n_neighbors=4, weights=uniform, p=2, score=0.517295 - 0.0s
[CV] n_neighbors=4, weights=uniform, p=2 .............................
[CV] .... n_neighbors=4, weights=uniform, p=2, score=0.470181 - 0.1s
[CV] n_neighbors=4, weights=uniform, p=2 .............................
[CV] .... n_neighbors=4, weights=uniform, p=2, score=0.573177 - 0.0s
[CV] n_neighbors=4, weights=distance, p=2 ............................
[CV] ... n_neighbors=4, weights=distance, p=2, score=0.524891 - 0.1s
[CV] n_neighbors=4, weights=distance, p=2 ............................
[CV] ... n_neighbors=4, weights=distance, p=2, score=0.475912 - 0.1s
[CV] n_neighbors=4, weights=distance, p=2 ............................
[CV] ... n_neighbors=4, weights=distance, p=2, score=0.580197 - 0.1s
[CV] n_neighbors=8, weights=uniform, p=1 .............................
[CV] .... n_neighbors=8, weights=uniform, p=1, score=0.565017 - 0.1s
[CV] n_neighbors=8, weights=uniform, p=1 .............................
[CV] .... n_neighbors=8, weights=uniform, p=1, score=0.522057 - 0.1s
[CV] n_neighbors=8, weights=uniform, p=1 .............................
[CV] .... n_neighbors=8, weights=uniform, p=1, score=0.617870 - 0.1s
[CV] n_neighbors=8, weights=distance, p=1 ............................
[CV] ... n_neighbors=8, weights=distance, p=1, score=0.569514 - 0.1s
[CV] n_neighbors=8, weights=distance, p=1 ............................
[CV] ... n_neighbors=8, weights=distance, p=1, score=0.523888 - 0.1s
[CV] n_neighbors=8, weights=distance, p=1 ............................
[CV] ... n_neighbors=8, weights=distance, p=1, score=0.622820 - 0.1s
[CV] n_neighbors=8, weights=uniform, p=2 .............................
[CV] .... n_neighbors=8, weights=uniform, p=2, score=0.545077 - 0.1s
[CV] n_neighbors=8, weights=uniform, p=2 .............................
[CV] .... n_neighbors=8, weights=uniform, p=2, score=0.498899 - 0.1s
[CV] n_neighbors=8, weights=uniform, p=2 .............................
[CV] .... n_neighbors=8, weights=uniform, p=2, score=0.599934 - 0.1s
[CV] n_neighbors=8, weights=distance, p=2 ............................
[CV] ... n_neighbors=8, weights=distance, p=2, score=0.549854 - 0.1s
[CV] n_neighbors=8, weights=distance, p=2 ............................
[CV] ... n_neighbors=8, weights=distance, p=2, score=0.505680 - 0.1s
[CV] n_neighbors=8, weights=distance, p=2 ............................
[CV] ... n_neighbors=8, weights=distance, p=2, score=0.605785 - 0.1s
[CV] n_neighbors=16, weights=uniform, p=1 ............................
[CV] ... n_neighbors=16, weights=uniform, p=1, score=0.550673 - 0.1s
[CV] n_neighbors=16, weights=uniform, p=1 ............................
[CV] ... n_neighbors=16, weights=uniform, p=1, score=0.523023 - 0.1s
[CV] n_neighbors=16, weights=uniform, p=1 ............................
[CV] ... n_neighbors=16, weights=uniform, p=1, score=0.605714 - 0.1s
[CV] n_neighbors=16, weights=distance, p=1 ...........................
[CV] .. n_neighbors=16, weights=distance, p=1, score=0.558492 - 0.1s
[CV] n_neighbors=16, weights=distance, p=1 ...........................
[CV] .. n_neighbors=16, weights=distance, p=1, score=0.527840 - 0.1s
[CV] n_neighbors=16, weights=distance, p=1 ...........................
[CV] .. n_neighbors=16, weights=distance, p=1, score=0.614383 - 0.1s
[CV] n_neighbors=16, weights=uniform, p=2 ............................
[CV] ... n_neighbors=16, weights=uniform, p=2, score=0.539078 - 0.1s
[CV] n_neighbors=16, weights=uniform, p=2 ............................
[CV] ... n_neighbors=16, weights=uniform, p=2, score=0.494526 - 0.1s
[CV] n_neighbors=16, weights=uniform, p=2 ............................
[CV] ... n_neighbors=16, weights=uniform, p=2, score=0.595751 - 0.1s
[CV] n_neighbors=16, weights=distance, p=2 ...........................
[CV] .. n_neighbors=16, weights=distance, p=2, score=0.546979 - 0.1s
[CV] n_neighbors=16, weights=distance, p=2 ...........................
[CV] .. n_neighbors=16, weights=distance, p=2, score=0.504534 - 0.1s
[CV] n_neighbors=16, weights=distance, p=2 ...........................
[CV] .. n_neighbors=16, weights=distance, p=2, score=0.604082 - 0.1s
[CV] n_neighbors=32, weights=uniform, p=1 ............................
[CV] ... n_neighbors=32, weights=uniform, p=1, score=0.525484 - 0.2s
[CV] n_neighbors=32, weights=uniform, p=1 ............................
[CV] ... n_neighbors=32, weights=uniform, p=1, score=0.508788 - 0.1s
[CV] n_neighbors=32, weights=uniform, p=1 ............................
[CV] ... n_neighbors=32, weights=uniform, p=1, score=0.590955 - 0.1s
[CV] n_neighbors=32, weights=distance, p=1 ...........................
[CV] .. n_neighbors=32, weights=distance, p=1, score=0.537220 - 0.1s
[CV] n_neighbors=32, weights=distance, p=1 ...........................
[CV] .. n_neighbors=32, weights=distance, p=1, score=0.516276 - 0.2s
[CV] n_neighbors=32, weights=distance, p=1 ...........................
[CV] .. n_neighbors=32, weights=distance, p=1, score=0.603014 - 0.1s
[CV] n_neighbors=32, weights=uniform, p=2 ............................
[CV] ... n_neighbors=32, weights=uniform, p=2, score=0.505860 - 0.1s
[CV] n_neighbors=32, weights=uniform, p=2 ............................
[CV] ... n_neighbors=32, weights=uniform, p=2, score=0.494565 - 0.1s
[CV] n_neighbors=32, weights=uniform, p=2 ............................
[CV] ... n_neighbors=32, weights=uniform, p=2, score=0.566297 - 0.1s
[CV] n_neighbors=32, weights=distance, p=2 ...........................
[CV] .. n_neighbors=32, weights=distance, p=2, score=0.519940 - 0.1s
[CV] n_neighbors=32, weights=distance, p=2 ...........................
[CV] .. n_neighbors=32, weights=distance, p=2, score=0.503694 - 0.1s
[CV] n_neighbors=32, weights=distance, p=2 ...........................
[CV] .. n_neighbors=32, weights=distance, p=2, score=0.581265 - 0.1s
[CV] n_neighbors=64, weights=uniform, p=1 ............................
[CV] ... n_neighbors=64, weights=uniform, p=1, score=0.496806 - 0.3s
[CV] n_neighbors=64, weights=uniform, p=1 ............................
[CV] ... n_neighbors=64, weights=uniform, p=1, score=0.486000 - 0.2s
[CV] n_neighbors=64, weights=uniform, p=1 ............................
[CV] ... n_neighbors=64, weights=uniform, p=1, score=0.556845 - 0.2s
[CV] n_neighbors=64, weights=distance, p=1 ...........................
[CV] .. n_neighbors=64, weights=distance, p=1, score=0.510688 - 0.3s
[CV] n_neighbors=64, weights=distance, p=1 ...........................
[CV] .. n_neighbors=64, weights=distance, p=1, score=0.496724 - 0.3s
[CV] n_neighbors=64, weights=distance, p=1 ...........................
[CV] .. n_neighbors=64, weights=distance, p=1, score=0.573628 - 0.2s
[CV] n_neighbors=64, weights=uniform, p=2 ............................
[CV] ... n_neighbors=64, weights=uniform, p=2, score=0.471893 - 0.1s
[CV] n_neighbors=64, weights=uniform, p=2 ............................
[CV] ... n_neighbors=64, weights=uniform, p=2, score=0.465897 - 0.2s
[CV] n_neighbors=64, weights=uniform, p=2 ............................
[CV] ... n_neighbors=64, weights=uniform, p=2, score=0.527780 - 0.2s
[CV] n_neighbors=64, weights=distance, p=2 ...........................
[CV] .. n_neighbors=64, weights=distance, p=2, score=0.489166 - 0.2s
[CV] n_neighbors=64, weights=distance, p=2 ...........................
[CV] .. n_neighbors=64, weights=distance, p=2, score=0.479413 - 0.1s
[CV] n_neighbors=64, weights=distance, p=2 ...........................
[CV] .. n_neighbors=64, weights=distance, p=2, score=0.548282 - 0.1s
[Parallel(n_jobs=1)]: Done 32 jobs | elapsed: 2.6s
[Parallel(n_jobs=1)]: Done 84 out of 84 | elapsed: 9.0s finished
Fitting 3 folds for each of 28 candidates, totalling 84 fits
[CV] n_neighbors=1, weights=uniform, p=1 .............................
[CV] .... n_neighbors=1, weights=uniform, p=1, score=0.330758 - 0.1s
[CV] n_neighbors=1, weights=uniform, p=1 .............................
[CV] .... n_neighbors=1, weights=uniform, p=1, score=0.380891 - 0.1s
[CV] n_neighbors=1, weights=uniform, p=1 .............................
[CV] .... n_neighbors=1, weights=uniform, p=1, score=0.340799 - 0.1s
[CV] n_neighbors=1, weights=distance, p=1 ............................
[CV] ... n_neighbors=1, weights=distance, p=1, score=0.330758 - 0.1s
[CV] n_neighbors=1, weights=distance, p=1 ............................
[CV] ... n_neighbors=1, weights=distance, p=1, score=0.380891 - 0.1s
[CV] n_neighbors=1, weights=distance, p=1 ............................
[CV] ... n_neighbors=1, weights=distance, p=1, score=0.340799 - 0.1s
[CV] n_neighbors=1, weights=uniform, p=2 .............................
[CV] .... n_neighbors=1, weights=uniform, p=2, score=0.361488 - 0.0s
[CV] n_neighbors=1, weights=uniform, p=2 .............................
[CV] .... n_neighbors=1, weights=uniform, p=2, score=0.394042 - 0.0s
[CV] n_neighbors=1, weights=uniform, p=2 .............................
[CV] .... n_neighbors=1, weights=uniform, p=2, score=0.318930 - 0.0s
[CV] n_neighbors=1, weights=distance, p=2 ............................
[CV] ... n_neighbors=1, weights=distance, p=2, score=0.361488 - 0.0s
[CV] n_neighbors=1, weights=distance, p=2 ............................
[CV] ... n_neighbors=1, weights=distance, p=2, score=0.394042 - 0.0s
[CV] n_neighbors=1, weights=distance, p=2 ............................
[CV] ... n_neighbors=1, weights=distance, p=2, score=0.318930 - 0.0s
[CV] n_neighbors=2, weights=uniform, p=1 .............................
[CV] .... n_neighbors=2, weights=uniform, p=1, score=0.499385 - 0.1s
[CV] n_neighbors=2, weights=uniform, p=1 .............................
[CV] .... n_neighbors=2, weights=uniform, p=1, score=0.535529 - 0.1s
[CV] n_neighbors=2, weights=uniform, p=1 .............................
[CV] .... n_neighbors=2, weights=uniform, p=1, score=0.513081 - 0.1s
[CV] n_neighbors=2, weights=distance, p=1 ............................
[CV] ... n_neighbors=2, weights=distance, p=1, score=0.495819 - 0.1s
[CV] n_neighbors=2, weights=distance, p=1 ............................
[CV] ... n_neighbors=2, weights=distance, p=1, score=0.535184 - 0.1s
[CV] n_neighbors=2, weights=distance, p=1 ............................
[CV] ... n_neighbors=2, weights=distance, p=1, score=0.509764 - 0.1s
[CV] n_neighbors=2, weights=uniform, p=2 .............................
[CV] .... n_neighbors=2, weights=uniform, p=2, score=0.464843 - 0.0s
[CV] n_neighbors=2, weights=uniform, p=2 .............................
[CV] .... n_neighbors=2, weights=uniform, p=2, score=0.496676 - 0.0s
[CV] n_neighbors=2, weights=uniform, p=2 .............................
[CV] .... n_neighbors=2, weights=uniform, p=2, score=0.469592 - 0.0s
[CV] n_neighbors=2, weights=distance, p=2 ............................
[CV] ... n_neighbors=2, weights=distance, p=2, score=0.464297 - 0.0s
[CV] n_neighbors=2, weights=distance, p=2 ............................
[CV] ... n_neighbors=2, weights=distance, p=2, score=0.497264 - 0.1s
[CV] n_neighbors=2, weights=distance, p=2 ............................
[CV] ... n_neighbors=2, weights=distance, p=2, score=0.467817 - 0.0s
[CV] n_neighbors=4, weights=uniform, p=1 .............................
[CV] .... n_neighbors=4, weights=uniform, p=1, score=0.583048 - 0.1s
[CV] n_neighbors=4, weights=uniform, p=1 .............................
[CV] .... n_neighbors=4, weights=uniform, p=1, score=0.560448 - 0.1s
[CV] n_neighbors=4, weights=uniform, p=1 .............................
[CV] .... n_neighbors=4, weights=uniform, p=1, score=0.538740 - 0.1s
[CV] n_neighbors=4, weights=distance, p=1 ............................
[CV] ... n_neighbors=4, weights=distance, p=1, score=0.581612 - 0.1s
[CV] n_neighbors=4, weights=distance, p=1 ............................
[CV] ... n_neighbors=4, weights=distance, p=1, score=0.565138 - 0.1s
[CV] n_neighbors=4, weights=distance, p=1 ............................
[CV] ... n_neighbors=4, weights=distance, p=1, score=0.540546 - 0.1s
[CV] n_neighbors=4, weights=uniform, p=2 .............................
[CV] .... n_neighbors=4, weights=uniform, p=2, score=0.574964 - 0.0s
[CV] n_neighbors=4, weights=uniform, p=2 .............................
[CV] .... n_neighbors=4, weights=uniform, p=2, score=0.553072 - 0.1s
[Parallel(n_jobs=1)]: Done 1 jobs | elapsed: 0.1s
[Parallel(n_jobs=1)]: Done 32 jobs | elapsed: 2.1s
[CV] n_neighbors=4, weights=uniform, p=2 .............................
[CV] .... n_neighbors=4, weights=uniform, p=2, score=0.515186 - 0.1s
[CV] n_neighbors=4, weights=distance, p=2 ............................
[CV] ... n_neighbors=4, weights=distance, p=2, score=0.574760 - 0.1s
[CV] n_neighbors=4, weights=distance, p=2 ............................
[CV] ... n_neighbors=4, weights=distance, p=2, score=0.554720 - 0.1s
[CV] n_neighbors=4, weights=distance, p=2 ............................
[CV] ... n_neighbors=4, weights=distance, p=2, score=0.519653 - 0.1s
[CV] n_neighbors=8, weights=uniform, p=1 .............................
[CV] .... n_neighbors=8, weights=uniform, p=1, score=0.588353 - 0.1s
[CV] n_neighbors=8, weights=uniform, p=1 .............................
[CV] .... n_neighbors=8, weights=uniform, p=1, score=0.566169 - 0.1s
[CV] n_neighbors=8, weights=uniform, p=1 .............................
[CV] .... n_neighbors=8, weights=uniform, p=1, score=0.537230 - 0.1s
[CV] n_neighbors=8, weights=distance, p=1 ............................
[CV] ... n_neighbors=8, weights=distance, p=1, score=0.592913 - 0.1s
[CV] n_neighbors=8, weights=distance, p=1 ............................
[CV] ... n_neighbors=8, weights=distance, p=1, score=0.572485 - 0.1s
[CV] n_neighbors=8, weights=distance, p=1 ............................
[CV] ... n_neighbors=8, weights=distance, p=1, score=0.543802 - 0.1s
[CV] n_neighbors=8, weights=uniform, p=2 .............................
[CV] .... n_neighbors=8, weights=uniform, p=2, score=0.574945 - 0.1s
[CV] n_neighbors=8, weights=uniform, p=2 .............................
[CV] .... n_neighbors=8, weights=uniform, p=2, score=0.562117 - 0.1s
[CV] n_neighbors=8, weights=uniform, p=2 .............................
[CV] .... n_neighbors=8, weights=uniform, p=2, score=0.528098 - 0.1s
[CV] n_neighbors=8, weights=distance, p=2 ............................
[CV] ... n_neighbors=8, weights=distance, p=2, score=0.582330 - 0.1s
[CV] n_neighbors=8, weights=distance, p=2 ............................
[CV] ... n_neighbors=8, weights=distance, p=2, score=0.565981 - 0.1s
[CV] n_neighbors=8, weights=distance, p=2 ............................
[CV] ... n_neighbors=8, weights=distance, p=2, score=0.534769 - 0.1s
[CV] n_neighbors=16, weights=uniform, p=1 ............................
[CV] ... n_neighbors=16, weights=uniform, p=1, score=0.570350 - 0.1s
[CV] n_neighbors=16, weights=uniform, p=1 ............................
[CV] ... n_neighbors=16, weights=uniform, p=1, score=0.560908 - 0.1s
[CV] n_neighbors=16, weights=uniform, p=1 ............................
[CV] ... n_neighbors=16, weights=uniform, p=1, score=0.535217 - 0.1s
[CV] n_neighbors=16, weights=distance, p=1 ...........................
[CV] .. n_neighbors=16, weights=distance, p=1, score=0.582218 - 0.1s
[CV] n_neighbors=16, weights=distance, p=1 ...........................
[CV] .. n_neighbors=16, weights=distance, p=1, score=0.568144 - 0.1s
[CV] n_neighbors=16, weights=distance, p=1 ...........................
[CV] .. n_neighbors=16, weights=distance, p=1, score=0.541564 - 0.1s
[CV] n_neighbors=16, weights=uniform, p=2 ............................
[CV] ... n_neighbors=16, weights=uniform, p=2, score=0.556728 - 0.1s
[CV] n_neighbors=16, weights=uniform, p=2 ............................
[CV] ... n_neighbors=16, weights=uniform, p=2, score=0.538722 - 0.1s
[CV] n_neighbors=16, weights=uniform, p=2 ............................
[CV] ... n_neighbors=16, weights=uniform, p=2, score=0.532438 - 0.1s
[CV] n_neighbors=16, weights=distance, p=2 ...........................
[CV] .. n_neighbors=16, weights=distance, p=2, score=0.569678 - 0.1s
[CV] n_neighbors=16, weights=distance, p=2 ...........................
[CV] .. n_neighbors=16, weights=distance, p=2, score=0.549118 - 0.1s
[CV] n_neighbors=16, weights=distance, p=2 ...........................
[CV] .. n_neighbors=16, weights=distance, p=2, score=0.539484 - 0.1s
[CV] n_neighbors=32, weights=uniform, p=1 ............................
[CV] ... n_neighbors=32, weights=uniform, p=1, score=0.552104 - 0.1s
[CV] n_neighbors=32, weights=uniform, p=1 ............................
[CV] ... n_neighbors=32, weights=uniform, p=1, score=0.539612 - 0.1s
[CV] n_neighbors=32, weights=uniform, p=1 ............................
[CV] ... n_neighbors=32, weights=uniform, p=1, score=0.525037 - 0.1s
[CV] n_neighbors=32, weights=distance, p=1 ...........................
[CV] .. n_neighbors=32, weights=distance, p=1, score=0.564477 - 0.1s
[CV] n_neighbors=32, weights=distance, p=1 ...........................
[CV] .. n_neighbors=32, weights=distance, p=1, score=0.550306 - 0.1s
[CV] n_neighbors=32, weights=distance, p=1 ...........................
[CV] .. n_neighbors=32, weights=distance, p=1, score=0.533985 - 0.1s
[CV] n_neighbors=32, weights=uniform, p=2 ............................
[CV] ... n_neighbors=32, weights=uniform, p=2, score=0.537144 - 0.1s
[CV] n_neighbors=32, weights=uniform, p=2 ............................
[CV] ... n_neighbors=32, weights=uniform, p=2, score=0.519089 - 0.1s
[CV] n_neighbors=32, weights=uniform, p=2 ............................
[CV] ... n_neighbors=32, weights=uniform, p=2, score=0.515972 - 0.1s
[CV] n_neighbors=32, weights=distance, p=2 ...........................
[CV] .. n_neighbors=32, weights=distance, p=2, score=0.552211 - 0.1s
[CV] n_neighbors=32, weights=distance, p=2 ...........................
[CV] .. n_neighbors=32, weights=distance, p=2, score=0.531775 - 0.1s
[CV] n_neighbors=32, weights=distance, p=2 ...........................
[CV] .. n_neighbors=32, weights=distance, p=2, score=0.526625 - 0.1s
[CV] n_neighbors=64, weights=uniform, p=1 ............................
[CV] ... n_neighbors=64, weights=uniform, p=1, score=0.520337 - 0.2s
[CV] n_neighbors=64, weights=uniform, p=1 ............................
[CV] ... n_neighbors=64, weights=uniform, p=1, score=0.509252 - 0.2s
[CV] n_neighbors=64, weights=uniform, p=1 ............................
[CV] ... n_neighbors=64, weights=uniform, p=1, score=0.489174 - 0.2s
[CV] n_neighbors=64, weights=distance, p=1 ...........................
[CV] .. n_neighbors=64, weights=distance, p=1, score=0.535731 - 0.2s
[CV] n_neighbors=64, weights=distance, p=1 ...........................
[CV] .. n_neighbors=64, weights=distance, p=1, score=0.522876 - 0.2s
[CV] n_neighbors=64, weights=distance, p=1 ...........................
[CV] .. n_neighbors=64, weights=distance, p=1, score=0.503598 - 0.2s
[CV] n_neighbors=64, weights=uniform, p=2 ............................
[CV] ... n_neighbors=64, weights=uniform, p=2, score=0.505237 - 0.1s
[CV] n_neighbors=64, weights=uniform, p=2 ............................
[CV] ... n_neighbors=64, weights=uniform, p=2, score=0.482973 - 0.1s
[CV] n_neighbors=64, weights=uniform, p=2 ............................
[CV] ... n_neighbors=64, weights=uniform, p=2, score=0.475854 - 0.1s
[CV] n_neighbors=64, weights=distance, p=2 ...........................
[CV] .. n_neighbors=64, weights=distance, p=2, score=0.522393 - 0.1s
[CV] n_neighbors=64, weights=distance, p=2 ...........................
[CV] .. n_neighbors=64, weights=distance, p=2, score=0.499280 - 0.1s
[CV] n_neighbors=64, weights=distance, p=2 ...........................
[CV] .. n_neighbors=64, weights=distance, p=2, score=0.492880 - 0.1s
Fitting 3 folds for each of 28 candidates, totalling 84 fits
[CV] n_neighbors=1, weights=uniform, p=1 .............................
[CV] .... n_neighbors=1, weights=uniform, p=1, score=0.427457 - 0.1s
[Parallel(n_jobs=1)]: Done 84 out of 84 | elapsed: 8.0s finished
[Parallel(n_jobs=1)]: Done 1 jobs | elapsed: 0.1s
[CV] n_neighbors=1, weights=uniform, p=1 .............................
[CV] .... n_neighbors=1, weights=uniform, p=1, score=0.265282 - 0.1s
[CV] n_neighbors=1, weights=uniform, p=1 .............................
[CV] .... n_neighbors=1, weights=uniform, p=1, score=0.341937 - 0.1s
[CV] n_neighbors=1, weights=distance, p=1 ............................
[CV] ... n_neighbors=1, weights=distance, p=1, score=0.427457 - 0.1s
[CV] n_neighbors=1, weights=distance, p=1 ............................
[CV] ... n_neighbors=1, weights=distance, p=1, score=0.265282 - 0.1s
[CV] n_neighbors=1, weights=distance, p=1 ............................
[CV] ... n_neighbors=1, weights=distance, p=1, score=0.341937 - 0.1s
[CV] n_neighbors=1, weights=uniform, p=2 .............................
[CV] .... n_neighbors=1, weights=uniform, p=2, score=0.409941 - 0.1s
[CV] n_neighbors=1, weights=uniform, p=2 .............................
[CV] .... n_neighbors=1, weights=uniform, p=2, score=0.321168 - 0.0s
[CV] n_neighbors=1, weights=uniform, p=2 .............................
[CV] .... n_neighbors=1, weights=uniform, p=2, score=0.323276 - 0.0s
[CV] n_neighbors=1, weights=distance, p=2 ............................
[CV] ... n_neighbors=1, weights=distance, p=2, score=0.409941 - 0.0s
[CV] n_neighbors=1, weights=distance, p=2 ............................
[CV] ... n_neighbors=1, weights=distance, p=2, score=0.321168 - 0.0s
[CV] n_neighbors=1, weights=distance, p=2 ............................
[CV] ... n_neighbors=1, weights=distance, p=2, score=0.323276 - 0.0s
[CV] n_neighbors=2, weights=uniform, p=1 .............................
[CV] .... n_neighbors=2, weights=uniform, p=1, score=0.530173 - 0.1s
[CV] n_neighbors=2, weights=uniform, p=1 .............................
[CV] .... n_neighbors=2, weights=uniform, p=1, score=0.476968 - 0.1s
[CV] n_neighbors=2, weights=uniform, p=1 .............................
[CV] .... n_neighbors=2, weights=uniform, p=1, score=0.504146 - 0.1s
[CV] n_neighbors=2, weights=distance, p=1 ............................
[CV] ... n_neighbors=2, weights=distance, p=1, score=0.532032 - 0.1s
[CV] n_neighbors=2, weights=distance, p=1 ............................
[CV] ... n_neighbors=2, weights=distance, p=1, score=0.477609 - 0.1s
[CV] n_neighbors=2, weights=distance, p=1 ............................
[CV] ... n_neighbors=2, weights=distance, p=1, score=0.502442 - 0.1s
[CV] n_neighbors=2, weights=uniform, p=2 .............................
[CV] .... n_neighbors=2, weights=uniform, p=2, score=0.514663 - 0.0s
[CV] n_neighbors=2, weights=uniform, p=2 .............................
[CV] .... n_neighbors=2, weights=uniform, p=2, score=0.438978 - 0.0s
[CV] n_neighbors=2, weights=uniform, p=2 .............................
[CV] .... n_neighbors=2, weights=uniform, p=2, score=0.486365 - 0.0s
[CV] n_neighbors=2, weights=distance, p=2 ............................
[CV] ... n_neighbors=2, weights=distance, p=2, score=0.519829 - 0.0s
[CV] n_neighbors=2, weights=distance, p=2 ............................
[CV] ... n_neighbors=2, weights=distance, p=2, score=0.445648 - 0.0s
[CV] n_neighbors=2, weights=distance, p=2 ............................
[CV] ... n_neighbors=2, weights=distance, p=2, score=0.486916 - 0.0s
[CV] n_neighbors=4, weights=uniform, p=1 .............................
[CV] .... n_neighbors=4, weights=uniform, p=1, score=0.567793 - 0.1s
[CV] n_neighbors=4, weights=uniform, p=1 .............................
[CV] .... n_neighbors=4, weights=uniform, p=1, score=0.581814 - 0.1s
[CV] n_neighbors=4, weights=uniform, p=1 .............................
[CV] .... n_neighbors=4, weights=uniform, p=1, score=0.585914 - 0.1s
[CV] n_neighbors=4, weights=distance, p=1 ............................
[CV] ... n_neighbors=4, weights=distance, p=1, score=0.572801 - 0.1s
[CV] n_neighbors=4, weights=distance, p=1 ............................
[CV] ... n_neighbors=4, weights=distance, p=1, score=0.581242 - 0.1s
[CV] n_neighbors=4, weights=distance, p=1 ............................
[CV] ... n_neighbors=4, weights=distance, p=1, score=0.587013 - 0.1s
[CV] n_neighbors=4, weights=uniform, p=2 .............................
[CV] .... n_neighbors=4, weights=uniform, p=2, score=0.560024 - 0.1s
[CV] n_neighbors=4, weights=uniform, p=2 .............................
[CV] .... n_neighbors=4, weights=uniform, p=2, score=0.530020 - 0.1s
[CV] n_neighbors=4, weights=uniform, p=2 .............................
[CV] .... n_neighbors=4, weights=uniform, p=2, score=0.553899 - 0.1s
[CV] n_neighbors=4, weights=distance, p=2 ............................
[CV] ... n_neighbors=4, weights=distance, p=2, score=0.563497 - 0.1s
[CV] n_neighbors=4, weights=distance, p=2 ............................
[CV] ... n_neighbors=4, weights=distance, p=2, score=0.533745 - 0.1s
[CV] n_neighbors=4, weights=distance, p=2 ............................
[CV] ... n_neighbors=4, weights=distance, p=2, score=0.558735 - 0.1s
[CV] n_neighbors=8, weights=uniform, p=1 .............................
[CV] .... n_neighbors=8, weights=uniform, p=1, score=0.578143 - 0.1s
[CV] n_neighbors=8, weights=uniform, p=1 .............................
[CV] .... n_neighbors=8, weights=uniform, p=1, score=0.575096 - 0.1s
[CV] n_neighbors=8, weights=uniform, p=1 .............................
[CV] .... n_neighbors=8, weights=uniform, p=1, score=0.604585 - 0.1s
[CV] n_neighbors=8, weights=distance, p=1 ............................
[CV] ... n_neighbors=8, weights=distance, p=1, score=0.580155 - 0.1s
[CV] n_neighbors=8, weights=distance, p=1 ............................
[CV] ... n_neighbors=8, weights=distance, p=1, score=0.581903 - 0.1s
[CV] n_neighbors=8, weights=distance, p=1 ............................
[CV] ... n_neighbors=8, weights=distance, p=1, score=0.609918 - 0.1s
[CV] n_neighbors=8, weights=uniform, p=2 .............................
[CV] .... n_neighbors=8, weights=uniform, p=2, score=0.574123 - 0.1s
[CV] n_neighbors=8, weights=uniform, p=2 .............................
[CV] .... n_neighbors=8, weights=uniform, p=2, score=0.535083 - 0.1s
[CV] n_neighbors=8, weights=uniform, p=2 .............................
[CV] .... n_neighbors=8, weights=uniform, p=2, score=0.581077 - 0.1s
[CV] n_neighbors=8, weights=distance, p=2 ............................
[CV] ... n_neighbors=8, weights=distance, p=2, score=0.579611 - 0.1s
[CV] n_neighbors=8, weights=distance, p=2 ............................
[CV] ... n_neighbors=8, weights=distance, p=2, score=0.545813 - 0.1s
[CV] n_neighbors=8, weights=distance, p=2 ............................
[CV] ... n_neighbors=8, weights=distance, p=2, score=0.586497 - 0.1s
[CV] n_neighbors=16, weights=uniform, p=1 ............................
[CV] ... n_neighbors=16, weights=uniform, p=1, score=0.571076 - 0.1s
[CV] n_neighbors=16, weights=uniform, p=1 ............................
[CV] ... n_neighbors=16, weights=uniform, p=1, score=0.564434 - 0.1s
[CV] n_neighbors=16, weights=uniform, p=1 ............................
[CV] ... n_neighbors=16, weights=uniform, p=1, score=0.613481 - 0.1s
[CV] n_neighbors=16, weights=distance, p=1 ...........................
[CV] .. n_neighbors=16, weights=distance, p=1, score=0.577022 - 0.1s
[CV] n_neighbors=16, weights=distance, p=1 ...........................
[CV] .. n_neighbors=16, weights=distance, p=1, score=0.572833 - 0.1s
[CV] n_neighbors=16, weights=distance, p=1 ...........................
[CV] .. n_neighbors=16, weights=distance, p=1, score=0.618268 - 0.1s
[CV] n_neighbors=16, weights=uniform, p=2 ............................
[CV] ... n_neighbors=16, weights=uniform, p=2, score=0.562006 - 0.1s
[CV] n_neighbors=16, weights=uniform, p=2 ............................
[CV] ... n_neighbors=16, weights=uniform, p=2, score=0.538554 - 0.1s
[CV] n_neighbors=16, weights=uniform, p=2 ............................
[CV] ... n_neighbors=16, weights=uniform, p=2, score=0.585450 - 0.1s
[CV] n_neighbors=16, weights=distance, p=2 ...........................
[CV] .. n_neighbors=16, weights=distance, p=2, score=0.571246 - 0.1s
[CV] n_neighbors=16, weights=distance, p=2 ...........................
[CV] .. n_neighbors=16, weights=distance, p=2, score=0.549113 - 0.1s
[CV] n_neighbors=16, weights=distance, p=2 ...........................
[CV] .. n_neighbors=16, weights=distance, p=2, score=0.592360 - 0.1s
[CV] n_neighbors=32, weights=uniform, p=1 ............................
[CV] ... n_neighbors=32, weights=uniform, p=1, score=0.540413 - 0.1s
[CV] n_neighbors=32, weights=uniform, p=1 ............................
[CV] ... n_neighbors=32, weights=uniform, p=1, score=0.543098 - 0.1s
[CV] n_neighbors=32, weights=uniform, p=1 ............................
[CV] ... n_neighbors=32, weights=uniform, p=1, score=0.588600 - 0.1s
[CV] n_neighbors=32, weights=distance, p=1 ...........................
[CV] .. n_neighbors=32, weights=distance, p=1, score=0.551281 - 0.1s
[CV] n_neighbors=32, weights=distance, p=1 ...........................
[CV] .. n_neighbors=32, weights=distance, p=1, score=0.554049 - 0.2s
[CV] n_neighbors=32, weights=distance, p=1 ...........................
[CV] .. n_neighbors=32, weights=distance, p=1, score=0.598444 - 0.2s
[CV] n_neighbors=32, weights=uniform, p=2 ............................
[CV] ... n_neighbors=32, weights=uniform, p=2, score=0.526727 - 0.1s
[CV] n_neighbors=32, weights=uniform, p=2 ............................
[CV] ... n_neighbors=32, weights=uniform, p=2, score=0.516573 - 0.1s
[CV] n_neighbors=32, weights=uniform, p=2 ............................
[CV] ... n_neighbors=32, weights=uniform, p=2, score=0.568240 - 0.1s
[CV] n_neighbors=32, weights=distance, p=2 ...........................
[CV] .. n_neighbors=32, weights=distance, p=2, score=0.541240 - 0.1s
[CV] n_neighbors=32, weights=distance, p=2 ...........................
[CV] .. n_neighbors=32, weights=distance, p=2, score=0.530102 - 0.1s
[CV] n_neighbors=32, weights=distance, p=2 ...........................
[CV] .. n_neighbors=32, weights=distance, p=2, score=0.579882 - 0.1s
[CV] n_neighbors=64, weights=uniform, p=1 ............................
[CV] ... n_neighbors=64, weights=uniform, p=1, score=0.503213 - 0.2s
[CV] n_neighbors=64, weights=uniform, p=1 ............................
[CV] ... n_neighbors=64, weights=uniform, p=1, score=0.515504 - 0.2s
[CV] n_neighbors=64, weights=uniform, p=1 ............................
[CV] ... n_neighbors=64, weights=uniform, p=1, score=0.553018 - 0.2s
[CV] n_neighbors=64, weights=distance, p=1 ...........................
[CV] .. n_neighbors=64, weights=distance, p=1, score=0.518644 - 0.2s
[CV] n_neighbors=64, weights=distance, p=1 ...........................
[CV] .. n_neighbors=64, weights=distance, p=1, score=0.529719 - 0.2s
[CV] n_neighbors=64, weights=distance, p=1 ...........................
[CV] .. n_neighbors=64, weights=distance, p=1, score=0.567758 - 0.2s
[CV] n_neighbors=64, weights=uniform, p=2 ............................
[CV] ... n_neighbors=64, weights=uniform, p=2, score=0.489515 - 0.1s
[CV] n_neighbors=64, weights=uniform, p=2 ............................
[CV] ... n_neighbors=64, weights=uniform, p=2, score=0.485921 - 0.1s
[CV] n_neighbors=64, weights=uniform, p=2 ............................
[CV] ... n_neighbors=64, weights=uniform, p=2, score=0.529928 - 0.1s
[CV] n_neighbors=64, weights=distance, p=2 ...........................
[CV] .. n_neighbors=64, weights=distance, p=2, score=0.507898 - 0.1s
[CV] n_neighbors=64, weights=distance, p=2 ...........................
[CV] .. n_neighbors=64, weights=distance, p=2, score=0.502328 - 0.1s
[CV] n_neighbors=64, weights=distance, p=2 ...........................
[CV] .. n_neighbors=64, weights=distance, p=2, score=0.546788 - 0.1s
[Parallel(n_jobs=1)]: Done 32 jobs | elapsed: 2.1s
[Parallel(n_jobs=1)]: Done 84 out of 84 | elapsed: 8.0s finished
Fitting 3 folds for each of 28 candidates, totalling 84 fits
[CV] n_neighbors=1, weights=uniform, p=1 .............................
[CV] .... n_neighbors=1, weights=uniform, p=1, score=0.355134 - 0.1s
[CV] n_neighbors=1, weights=uniform, p=1 .............................
[CV] .... n_neighbors=1, weights=uniform, p=1, score=0.280507 - 0.1s
[CV] n_neighbors=1, weights=uniform, p=1 .............................
[CV] .... n_neighbors=1, weights=uniform, p=1, score=0.304392 - 0.1s
[CV] n_neighbors=1, weights=distance, p=1 ............................
[CV] ... n_neighbors=1, weights=distance, p=1, score=0.355134 - 0.1s
[CV] n_neighbors=1, weights=distance, p=1 ............................
[CV] ... n_neighbors=1, weights=distance, p=1, score=0.280507 - 0.1s
[CV] n_neighbors=1, weights=distance, p=1 ............................
[CV] ... n_neighbors=1, weights=distance, p=1, score=0.304392 - 0.1s
[CV] n_neighbors=1, weights=uniform, p=2 .............................
[CV] .... n_neighbors=1, weights=uniform, p=2, score=0.283454 - 0.0s
[CV] n_neighbors=1, weights=uniform, p=2 .............................
[CV] .... n_neighbors=1, weights=uniform, p=2, score=0.342338 - 0.0s
[CV] n_neighbors=1, weights=uniform, p=2 .............................
[CV] .... n_neighbors=1, weights=uniform, p=2, score=0.315890 - 0.0s
[CV] n_neighbors=1, weights=distance, p=2 ............................
[CV] ... n_neighbors=1, weights=distance, p=2, score=0.283454 - 0.0s
[CV] n_neighbors=1, weights=distance, p=2 ............................
[CV] ... n_neighbors=1, weights=distance, p=2, score=0.342338 - 0.0s
[CV] n_neighbors=1, weights=distance, p=2 ............................
[CV] ... n_neighbors=1, weights=distance, p=2, score=0.315890 - 0.0s
[CV] n_neighbors=2, weights=uniform, p=1 .............................
[CV] .... n_neighbors=2, weights=uniform, p=1, score=0.527775 - 0.1s
[CV] n_neighbors=2, weights=uniform, p=1 .............................
[CV] .... n_neighbors=2, weights=uniform, p=1, score=0.496683 - 0.1s
[CV] n_neighbors=2, weights=uniform, p=1 .............................
[CV] .... n_neighbors=2, weights=uniform, p=1, score=0.471782 - 0.1s
[CV] n_neighbors=2, weights=distance, p=1 ............................
[CV] ... n_neighbors=2, weights=distance, p=1, score=0.523615 - 0.1s
[CV] n_neighbors=2, weights=distance, p=1 ............................
[CV] ... n_neighbors=2, weights=distance, p=1, score=0.492507 - 0.1s
[CV] n_neighbors=2, weights=distance, p=1 ............................
[CV] ... n_neighbors=2, weights=distance, p=1, score=0.461671 - 0.1s
[CV] n_neighbors=2, weights=uniform, p=2 .............................
[CV] .... n_neighbors=2, weights=uniform, p=2, score=0.504386 - 0.0s
[CV] n_neighbors=2, weights=uniform, p=2 .............................
[CV] .... n_neighbors=2, weights=uniform, p=2, score=0.472732 - 0.0s
[CV] n_neighbors=2, weights=uniform, p=2 .............................
[CV] .... n_neighbors=2, weights=uniform, p=2, score=0.485493 - 0.0s
[CV] n_neighbors=2, weights=distance, p=2 ............................
[CV] ... n_neighbors=2, weights=distance, p=2, score=0.495932 - 0.0s
[CV] n_neighbors=2, weights=distance, p=2 ............................
[CV] ... n_neighbors=2, weights=distance, p=2, score=0.471413 - 0.0s
[CV] n_neighbors=2, weights=distance, p=2 ............................
[CV] ... n_neighbors=2, weights=distance, p=2, score=0.477968 - 0.0s
[CV] n_neighbors=4, weights=uniform, p=1 .............................
[CV] .... n_neighbors=4, weights=uniform, p=1, score=0.597771 - 0.1s
[CV] n_neighbors=4, weights=uniform, p=1 .............................
[CV] .... n_neighbors=4, weights=uniform, p=1, score=0.530133 - 0.1s
[CV] n_neighbors=4, weights=uniform, p=1 .............................
[CV] .... n_neighbors=4, weights=uniform, p=1, score=0.566941 - 0.1s
[CV] n_neighbors=4, weights=distance, p=1 ............................
[CV] ... n_neighbors=4, weights=distance, p=1, score=0.593707 - 0.1s
[CV] n_neighbors=4, weights=distance, p=1 ............................
[CV] ... n_neighbors=4, weights=distance, p=1, score=0.531104 - 0.1s
[CV] n_neighbors=4, weights=distance, p=1 ............................
[CV] ... n_neighbors=4, weights=distance, p=1, score=0.557286 - 0.1s
[CV] n_neighbors=4, weights=uniform, p=2 .............................
[CV] .... n_neighbors=4, weights=uniform, p=2, score=0.584588 - 0.0s
[CV] n_neighbors=4, weights=uniform, p=2 .............................
[CV] .... n_neighbors=4, weights=uniform, p=2, score=0.527167 - 0.1s
[Parallel(n_jobs=1)]: Done 1 jobs | elapsed: 0.1s
[Parallel(n_jobs=1)]: Done 32 jobs | elapsed: 2.0s
[CV] n_neighbors=4, weights=uniform, p=2 .............................
[CV] .... n_neighbors=4, weights=uniform, p=2, score=0.551416 - 0.0s
[CV] n_neighbors=4, weights=distance, p=2 ............................
[CV] ... n_neighbors=4, weights=distance, p=2, score=0.576598 - 0.0s
[CV] n_neighbors=4, weights=distance, p=2 ............................
[CV] ... n_neighbors=4, weights=distance, p=2, score=0.529979 - 0.1s
[CV] n_neighbors=4, weights=distance, p=2 ............................
[CV] ... n_neighbors=4, weights=distance, p=2, score=0.541880 - 0.1s
[CV] n_neighbors=8, weights=uniform, p=1 .............................
[CV] .... n_neighbors=8, weights=uniform, p=1, score=0.622653 - 0.1s
[CV] n_neighbors=8, weights=uniform, p=1 .............................
[CV] .... n_neighbors=8, weights=uniform, p=1, score=0.551083 - 0.1s
[CV] n_neighbors=8, weights=uniform, p=1 .............................
[CV] .... n_neighbors=8, weights=uniform, p=1, score=0.595790 - 0.1s
[CV] n_neighbors=8, weights=distance, p=1 ............................
[CV] ... n_neighbors=8, weights=distance, p=1, score=0.622336 - 0.1s
[CV] n_neighbors=8, weights=distance, p=1 ............................
[CV] ... n_neighbors=8, weights=distance, p=1, score=0.553337 - 0.1s
[CV] n_neighbors=8, weights=distance, p=1 ............................
[CV] ... n_neighbors=8, weights=distance, p=1, score=0.592896 - 0.1s
[CV] n_neighbors=8, weights=uniform, p=2 .............................
[CV] .... n_neighbors=8, weights=uniform, p=2, score=0.622518 - 0.1s
[CV] n_neighbors=8, weights=uniform, p=2 .............................
[CV] .... n_neighbors=8, weights=uniform, p=2, score=0.541208 - 0.1s
[CV] n_neighbors=8, weights=uniform, p=2 .............................
[CV] .... n_neighbors=8, weights=uniform, p=2, score=0.587970 - 0.1s
[CV] n_neighbors=8, weights=distance, p=2 ............................
[CV] ... n_neighbors=8, weights=distance, p=2, score=0.619657 - 0.1s
[CV] n_neighbors=8, weights=distance, p=2 ............................
[CV] ... n_neighbors=8, weights=distance, p=2, score=0.545273 - 0.1s
[CV] n_neighbors=8, weights=distance, p=2 ............................
[CV] ... n_neighbors=8, weights=distance, p=2, score=0.587124 - 0.1s
[CV] n_neighbors=16, weights=uniform, p=1 ............................
[CV] ... n_neighbors=16, weights=uniform, p=1, score=0.605267 - 0.1s
[CV] n_neighbors=16, weights=uniform, p=1 ............................
[CV] ... n_neighbors=16, weights=uniform, p=1, score=0.557649 - 0.1s
[CV] n_neighbors=16, weights=uniform, p=1 ............................
[CV] ... n_neighbors=16, weights=uniform, p=1, score=0.597216 - 0.1s
[CV] n_neighbors=16, weights=distance, p=1 ...........................
[CV] .. n_neighbors=16, weights=distance, p=1, score=0.612342 - 0.1s
[CV] n_neighbors=16, weights=distance, p=1 ...........................
[CV] .. n_neighbors=16, weights=distance, p=1, score=0.560264 - 0.1s
[CV] n_neighbors=16, weights=distance, p=1 ...........................
[CV] .. n_neighbors=16, weights=distance, p=1, score=0.600627 - 0.1s
[CV] n_neighbors=16, weights=uniform, p=2 ............................
[CV] ... n_neighbors=16, weights=uniform, p=2, score=0.601705 - 0.1s
[CV] n_neighbors=16, weights=uniform, p=2 ............................
[CV] ... n_neighbors=16, weights=uniform, p=2, score=0.550970 - 0.1s
[CV] n_neighbors=16, weights=uniform, p=2 ............................
[CV] ... n_neighbors=16, weights=uniform, p=2, score=0.568201 - 0.1s
[CV] n_neighbors=16, weights=distance, p=2 ...........................
[CV] .. n_neighbors=16, weights=distance, p=2, score=0.609261 - 0.1s
[CV] n_neighbors=16, weights=distance, p=2 ...........................
[CV] .. n_neighbors=16, weights=distance, p=2, score=0.554947 - 0.1s
[CV] n_neighbors=16, weights=distance, p=2 ...........................
[CV] .. n_neighbors=16, weights=distance, p=2, score=0.576603 - 0.1s
[CV] n_neighbors=32, weights=uniform, p=1 ............................
[CV] ... n_neighbors=32, weights=uniform, p=1, score=0.579097 - 0.2s
[CV] n_neighbors=32, weights=uniform, p=1 ............................
[CV] ... n_neighbors=32, weights=uniform, p=1, score=0.555206 - 0.1s
[CV] n_neighbors=32, weights=uniform, p=1 ............................
[CV] ... n_neighbors=32, weights=uniform, p=1, score=0.577978 - 0.2s
[CV] n_neighbors=32, weights=distance, p=1 ...........................
[CV] .. n_neighbors=32, weights=distance, p=1, score=0.590542 - 0.2s
[CV] n_neighbors=32, weights=distance, p=1 ...........................
[CV] .. n_neighbors=32, weights=distance, p=1, score=0.559891 - 0.1s
[CV] n_neighbors=32, weights=distance, p=1 ...........................
[CV] .. n_neighbors=32, weights=distance, p=1, score=0.586453 - 0.1s
[CV] n_neighbors=32, weights=uniform, p=2 ............................
[CV] ... n_neighbors=32, weights=uniform, p=2, score=0.581429 - 0.1s
[CV] n_neighbors=32, weights=uniform, p=2 ............................
[CV] ... n_neighbors=32, weights=uniform, p=2, score=0.545461 - 0.1s
[CV] n_neighbors=32, weights=uniform, p=2 ............................
[CV] ... n_neighbors=32, weights=uniform, p=2, score=0.552031 - 0.1s
[CV] n_neighbors=32, weights=distance, p=2 ...........................
[CV] .. n_neighbors=32, weights=distance, p=2, score=0.592313 - 0.1s
[CV] n_neighbors=32, weights=distance, p=2 ...........................
[CV] .. n_neighbors=32, weights=distance, p=2, score=0.550909 - 0.1s
[CV] n_neighbors=32, weights=distance, p=2 ...........................
[CV] .. n_neighbors=32, weights=distance, p=2, score=0.563710 - 0.1s
[CV] n_neighbors=64, weights=uniform, p=1 ............................
[CV] ... n_neighbors=64, weights=uniform, p=1, score=0.544357 - 0.2s
[CV] n_neighbors=64, weights=uniform, p=1 ............................
[CV] ... n_neighbors=64, weights=uniform, p=1, score=0.530660 - 0.2s
[CV] n_neighbors=64, weights=uniform, p=1 ............................
[CV] ... n_neighbors=64, weights=uniform, p=1, score=0.538062 - 0.2s
[CV] n_neighbors=64, weights=distance, p=1 ...........................
[CV] .. n_neighbors=64, weights=distance, p=1, score=0.558766 - 0.2s
[CV] n_neighbors=64, weights=distance, p=1 ...........................
[CV] .. n_neighbors=64, weights=distance, p=1, score=0.540486 - 0.2s
[CV] n_neighbors=64, weights=distance, p=1 ...........................
[CV] .. n_neighbors=64, weights=distance, p=1, score=0.552560 - 0.2s
[CV] n_neighbors=64, weights=uniform, p=2 ............................
[CV] ... n_neighbors=64, weights=uniform, p=2, score=0.535646 - 0.1s
[CV] n_neighbors=64, weights=uniform, p=2 ............................
[CV] ... n_neighbors=64, weights=uniform, p=2, score=0.515888 - 0.1s
[CV] n_neighbors=64, weights=uniform, p=2 ............................
[CV] ... n_neighbors=64, weights=uniform, p=2, score=0.512264 - 0.1s
[CV] n_neighbors=64, weights=distance, p=2 ...........................
[CV] .. n_neighbors=64, weights=distance, p=2, score=0.552651 - 0.1s
[CV] n_neighbors=64, weights=distance, p=2 ...........................
[CV] .. n_neighbors=64, weights=distance, p=2, score=0.527904 - 0.1s
[CV] n_neighbors=64, weights=distance, p=2 ...........................
[CV] .. n_neighbors=64, weights=distance, p=2, score=0.529803 - 0.1s
Fitting 3 folds for each of 28 candidates, totalling 84 fits
[CV] n_neighbors=1, weights=uniform, p=1 .............................
[CV] .... n_neighbors=1, weights=uniform, p=1, score=0.362979 - 0.1s
[Parallel(n_jobs=1)]: Done 84 out of 84 | elapsed: 7.8s finished
[Parallel(n_jobs=1)]: Done 1 jobs | elapsed: 0.1s
[CV] n_neighbors=1, weights=uniform, p=1 .............................
[CV] .... n_neighbors=1, weights=uniform, p=1, score=0.419776 - 0.1s
[CV] n_neighbors=1, weights=uniform, p=1 .............................
[CV] .... n_neighbors=1, weights=uniform, p=1, score=0.325993 - 0.1s
[CV] n_neighbors=1, weights=distance, p=1 ............................
[CV] ... n_neighbors=1, weights=distance, p=1, score=0.362979 - 0.1s
[CV] n_neighbors=1, weights=distance, p=1 ............................
[CV] ... n_neighbors=1, weights=distance, p=1, score=0.419776 - 0.1s
[CV] n_neighbors=1, weights=distance, p=1 ............................
[CV] ... n_neighbors=1, weights=distance, p=1, score=0.325993 - 0.1s
[CV] n_neighbors=1, weights=uniform, p=2 .............................
[CV] .... n_neighbors=1, weights=uniform, p=2, score=0.345180 - 0.0s
[CV] n_neighbors=1, weights=uniform, p=2 .............................
[CV] .... n_neighbors=1, weights=uniform, p=2, score=0.375002 - 0.0s
[CV] n_neighbors=1, weights=uniform, p=2 .............................
[CV] .... n_neighbors=1, weights=uniform, p=2, score=0.316343 - 0.0s
[CV] n_neighbors=1, weights=distance, p=2 ............................
[CV] ... n_neighbors=1, weights=distance, p=2, score=0.345180 - 0.0s
[CV] n_neighbors=1, weights=distance, p=2 ............................
[CV] ... n_neighbors=1, weights=distance, p=2, score=0.375002 - 0.0s
[CV] n_neighbors=1, weights=distance, p=2 ............................
[CV] ... n_neighbors=1, weights=distance, p=2, score=0.316343 - 0.0s
[CV] n_neighbors=2, weights=uniform, p=1 .............................
[CV] .... n_neighbors=2, weights=uniform, p=1, score=0.480215 - 0.1s
[CV] n_neighbors=2, weights=uniform, p=1 .............................
[CV] .... n_neighbors=2, weights=uniform, p=1, score=0.467232 - 0.1s
[CV] n_neighbors=2, weights=uniform, p=1 .............................
[CV] .... n_neighbors=2, weights=uniform, p=1, score=0.483057 - 0.1s
[CV] n_neighbors=2, weights=distance, p=1 ............................
[CV] ... n_neighbors=2, weights=distance, p=1, score=0.480936 - 0.1s
[CV] n_neighbors=2, weights=distance, p=1 ............................
[CV] ... n_neighbors=2, weights=distance, p=1, score=0.468699 - 0.1s
[CV] n_neighbors=2, weights=distance, p=1 ............................
[CV] ... n_neighbors=2, weights=distance, p=1, score=0.484862 - 0.1s
[CV] n_neighbors=2, weights=uniform, p=2 .............................
[CV] .... n_neighbors=2, weights=uniform, p=2, score=0.493512 - 0.0s
[CV] n_neighbors=2, weights=uniform, p=2 .............................
[CV] .... n_neighbors=2, weights=uniform, p=2, score=0.465871 - 0.0s
[CV] n_neighbors=2, weights=uniform, p=2 .............................
[CV] .... n_neighbors=2, weights=uniform, p=2, score=0.524129 - 0.0s
[CV] n_neighbors=2, weights=distance, p=2 ............................
[CV] ... n_neighbors=2, weights=distance, p=2, score=0.495123 - 0.0s
[CV] n_neighbors=2, weights=distance, p=2 ............................
[CV] ... n_neighbors=2, weights=distance, p=2, score=0.469009 - 0.0s
[CV] n_neighbors=2, weights=distance, p=2 ............................
[CV] ... n_neighbors=2, weights=distance, p=2, score=0.521000 - 0.0s
[CV] n_neighbors=4, weights=uniform, p=1 .............................
[CV] .... n_neighbors=4, weights=uniform, p=1, score=0.554599 - 0.1s
[CV] n_neighbors=4, weights=uniform, p=1 .............................
[CV] .... n_neighbors=4, weights=uniform, p=1, score=0.510141 - 0.1s
[CV] n_neighbors=4, weights=uniform, p=1 .............................
[CV] .... n_neighbors=4, weights=uniform, p=1, score=0.540223 - 0.1s
[CV] n_neighbors=4, weights=distance, p=1 ............................
[CV] ... n_neighbors=4, weights=distance, p=1, score=0.555122 - 0.1s
[CV] n_neighbors=4, weights=distance, p=1 ............................
[CV] ... n_neighbors=4, weights=distance, p=1, score=0.516449 - 0.1s
[CV] n_neighbors=4, weights=distance, p=1 ............................
[CV] ... n_neighbors=4, weights=distance, p=1, score=0.543562 - 0.1s
[CV] n_neighbors=4, weights=uniform, p=2 .............................
[CV] .... n_neighbors=4, weights=uniform, p=2, score=0.537427 - 0.1s
[CV] n_neighbors=4, weights=uniform, p=2 .............................
[CV] .... n_neighbors=4, weights=uniform, p=2, score=0.502612 - 0.1s
[CV] n_neighbors=4, weights=uniform, p=2 .............................
[CV] .... n_neighbors=4, weights=uniform, p=2, score=0.553996 - 0.1s
[CV] n_neighbors=4, weights=distance, p=2 ............................
[CV] ... n_neighbors=4, weights=distance, p=2, score=0.539701 - 0.1s
[CV] n_neighbors=4, weights=distance, p=2 ............................
[CV] ... n_neighbors=4, weights=distance, p=2, score=0.510849 - 0.1s
[CV] n_neighbors=4, weights=distance, p=2 ............................
[CV] ... n_neighbors=4, weights=distance, p=2, score=0.556266 - 0.1s
[CV] n_neighbors=8, weights=uniform, p=1 .............................
[CV] .... n_neighbors=8, weights=uniform, p=1, score=0.570799 - 0.1s
[CV] n_neighbors=8, weights=uniform, p=1 .............................
[CV] .... n_neighbors=8, weights=uniform, p=1, score=0.527881 - 0.1s
[CV] n_neighbors=8, weights=uniform, p=1 .............................
[CV] .... n_neighbors=8, weights=uniform, p=1, score=0.552523 - 0.1s
[CV] n_neighbors=8, weights=distance, p=1 ............................
[CV] ... n_neighbors=8, weights=distance, p=1, score=0.573968 - 0.1s
[CV] n_neighbors=8, weights=distance, p=1 ............................
[CV] ... n_neighbors=8, weights=distance, p=1, score=0.534784 - 0.1s
[CV] n_neighbors=8, weights=distance, p=1 ............................
[CV] ... n_neighbors=8, weights=distance, p=1, score=0.559260 - 0.1s
[CV] n_neighbors=8, weights=uniform, p=2 .............................
[CV] .... n_neighbors=8, weights=uniform, p=2, score=0.554918 - 0.1s
[CV] n_neighbors=8, weights=uniform, p=2 .............................
[CV] .... n_neighbors=8, weights=uniform, p=2, score=0.507544 - 0.1s
[CV] n_neighbors=8, weights=uniform, p=2 .............................
[CV] .... n_neighbors=8, weights=uniform, p=2, score=0.547387 - 0.1s
[CV] n_neighbors=8, weights=distance, p=2 ............................
[CV] ... n_neighbors=8, weights=distance, p=2, score=0.559274 - 0.1s
[CV] n_neighbors=8, weights=distance, p=2 ............................
[CV] ... n_neighbors=8, weights=distance, p=2, score=0.515589 - 0.1s
[CV] n_neighbors=8, weights=distance, p=2 ............................
[CV] ... n_neighbors=8, weights=distance, p=2, score=0.555771 - 0.1s
[CV] n_neighbors=16, weights=uniform, p=1 ............................
[CV] ... n_neighbors=16, weights=uniform, p=1, score=0.566155 - 0.2s
[CV] n_neighbors=16, weights=uniform, p=1 ............................
[CV] ... n_neighbors=16, weights=uniform, p=1, score=0.542190 - 0.2s
[CV] n_neighbors=16, weights=uniform, p=1 ............................
[CV] ... n_neighbors=16, weights=uniform, p=1, score=0.546435 - 0.1s
[CV] n_neighbors=16, weights=distance, p=1 ...........................
[CV] .. n_neighbors=16, weights=distance, p=1, score=0.572599 - 0.2s
[CV] n_neighbors=16, weights=distance, p=1 ...........................
[CV] .. n_neighbors=16, weights=distance, p=1, score=0.548052 - 0.2s
[CV] n_neighbors=16, weights=distance, p=1 ...........................
[CV] .. n_neighbors=16, weights=distance, p=1, score=0.554246 - 0.2s
[CV] n_neighbors=16, weights=uniform, p=2 ............................
[CV] ... n_neighbors=16, weights=uniform, p=2, score=0.554850 - 0.1s
[CV] n_neighbors=16, weights=uniform, p=2 ............................
[CV] ... n_neighbors=16, weights=uniform, p=2, score=0.527273 - 0.1s
[CV] n_neighbors=16, weights=uniform, p=2 ............................
[CV] ... n_neighbors=16, weights=uniform, p=2, score=0.529514 - 0.1s
[CV] n_neighbors=16, weights=distance, p=2 ...........................
[CV] .. n_neighbors=16, weights=distance, p=2, score=0.562790 - 0.1s
[CV] n_neighbors=16, weights=distance, p=2 ...........................
[CV] .. n_neighbors=16, weights=distance, p=2, score=0.532942 - 0.1s
[CV] n_neighbors=16, weights=distance, p=2 ...........................
[CV] .. n_neighbors=16, weights=distance, p=2, score=0.541070 - 0.1s
[CV] n_neighbors=32, weights=uniform, p=1 ............................
[CV] ... n_neighbors=32, weights=uniform, p=1, score=0.546936 - 0.2s
[CV] n_neighbors=32, weights=uniform, p=1 ............................
[CV] ... n_neighbors=32, weights=uniform, p=1, score=0.530957 - 0.2s
[CV] n_neighbors=32, weights=uniform, p=1 ............................
[CV] ... n_neighbors=32, weights=uniform, p=1, score=0.525895 - 0.1s
[CV] n_neighbors=32, weights=distance, p=1 ...........................
[CV] .. n_neighbors=32, weights=distance, p=1, score=0.555927 - 0.1s
[CV] n_neighbors=32, weights=distance, p=1 ...........................
[CV] .. n_neighbors=32, weights=distance, p=1, score=0.538946 - 0.2s
[CV] n_neighbors=32, weights=distance, p=1 ...........................
[CV] .. n_neighbors=32, weights=distance, p=1, score=0.536417 - 0.2s
[CV] n_neighbors=32, weights=uniform, p=2 ............................
[CV] ... n_neighbors=32, weights=uniform, p=2, score=0.530715 - 0.1s
[CV] n_neighbors=32, weights=uniform, p=2 ............................
[CV] ... n_neighbors=32, weights=uniform, p=2, score=0.515217 - 0.1s
[CV] n_neighbors=32, weights=uniform, p=2 ............................
[CV] ... n_neighbors=32, weights=uniform, p=2, score=0.517772 - 0.1s
[CV] n_neighbors=32, weights=distance, p=2 ...........................
[CV] .. n_neighbors=32, weights=distance, p=2, score=0.541790 - 0.1s
[CV] n_neighbors=32, weights=distance, p=2 ...........................
[CV] .. n_neighbors=32, weights=distance, p=2, score=0.524670 - 0.1s
[CV] n_neighbors=32, weights=distance, p=2 ...........................
[CV] .. n_neighbors=32, weights=distance, p=2, score=0.530488 - 0.1s
[CV] n_neighbors=64, weights=uniform, p=1 ............................
[CV] ... n_neighbors=64, weights=uniform, p=1, score=0.515909 - 0.2s
[CV] n_neighbors=64, weights=uniform, p=1 ............................
[CV] ... n_neighbors=64, weights=uniform, p=1, score=0.491415 - 0.2s
[CV] n_neighbors=64, weights=uniform, p=1 ............................
[CV] ... n_neighbors=64, weights=uniform, p=1, score=0.488694 - 0.2s
[CV] n_neighbors=64, weights=distance, p=1 ...........................
[CV] .. n_neighbors=64, weights=distance, p=1, score=0.528077 - 0.2s
[CV] n_neighbors=64, weights=distance, p=1 ...........................
[CV] .. n_neighbors=64, weights=distance, p=1, score=0.506916 - 0.2s
[CV] n_neighbors=64, weights=distance, p=1 ...........................
[CV] .. n_neighbors=64, weights=distance, p=1, score=0.504058 - 0.2s
[CV] n_neighbors=64, weights=uniform, p=2 ............................
[CV] ... n_neighbors=64, weights=uniform, p=2, score=0.492966 - 0.1s
[CV] n_neighbors=64, weights=uniform, p=2 ............................
[CV] ... n_neighbors=64, weights=uniform, p=2, score=0.476311 - 0.2s
[CV] n_neighbors=64, weights=uniform, p=2 ............................
[CV] ... n_neighbors=64, weights=uniform, p=2, score=0.471781 - 0.1s
[CV] n_neighbors=64, weights=distance, p=2 ...........................
[CV] .. n_neighbors=64, weights=distance, p=2, score=0.507828 - 0.1s
[CV] n_neighbors=64, weights=distance, p=2 ...........................
[CV] .. n_neighbors=64, weights=distance, p=2, score=0.494426 - 0.2s
[CV] n_neighbors=64, weights=distance, p=2 ...........................
[CV] .. n_neighbors=64, weights=distance, p=2, score=0.490816 - 0.1s
[Parallel(n_jobs=1)]: Done 32 jobs | elapsed: 2.1s
[Parallel(n_jobs=1)]: Done 84 out of 84 | elapsed: 8.6s finished
Fitting 3 folds for each of 28 candidates, totalling 84 fits
[CV] n_neighbors=1, weights=uniform, p=1 .............................
[CV] .... n_neighbors=1, weights=uniform, p=1, score=0.287706 - 0.1s
[CV] n_neighbors=1, weights=uniform, p=1 .............................
[CV] .... n_neighbors=1, weights=uniform, p=1, score=0.286047 - 0.1s
[CV] n_neighbors=1, weights=uniform, p=1 .............................
[CV] .... n_neighbors=1, weights=uniform, p=1, score=0.462045 - 0.1s
[CV] n_neighbors=1, weights=distance, p=1 ............................
[CV] ... n_neighbors=1, weights=distance, p=1, score=0.287706 - 0.1s
[CV] n_neighbors=1, weights=distance, p=1 ............................
[CV] ... n_neighbors=1, weights=distance, p=1, score=0.286047 - 0.1s
[CV] n_neighbors=1, weights=distance, p=1 ............................
[CV] ... n_neighbors=1, weights=distance, p=1, score=0.462045 - 0.1s
[CV] n_neighbors=1, weights=uniform, p=2 .............................
[CV] .... n_neighbors=1, weights=uniform, p=2, score=0.276489 - 0.0s
[CV] n_neighbors=1, weights=uniform, p=2 .............................
[CV] .... n_neighbors=1, weights=uniform, p=2, score=0.245607 - 0.0s
[CV] n_neighbors=1, weights=uniform, p=2 .............................
[CV] .... n_neighbors=1, weights=uniform, p=2, score=0.417738 - 0.0s
[CV] n_neighbors=1, weights=distance, p=2 ............................
[CV] ... n_neighbors=1, weights=distance, p=2, score=0.276489 - 0.0s
[CV] n_neighbors=1, weights=distance, p=2 ............................
[CV] ... n_neighbors=1, weights=distance, p=2, score=0.245607 - 0.0s
[CV] n_neighbors=1, weights=distance, p=2 ............................
[CV] ... n_neighbors=1, weights=distance, p=2, score=0.417738 - 0.0s
[CV] n_neighbors=2, weights=uniform, p=1 .............................
[CV] .... n_neighbors=2, weights=uniform, p=1, score=0.492307 - 0.1s
[CV] n_neighbors=2, weights=uniform, p=1 .............................
[CV] .... n_neighbors=2, weights=uniform, p=1, score=0.433342 - 0.1s
[CV] n_neighbors=2, weights=uniform, p=1 .............................
[CV] .... n_neighbors=2, weights=uniform, p=1, score=0.534414 - 0.1s
[CV] n_neighbors=2, weights=distance, p=1 ............................
[CV] ... n_neighbors=2, weights=distance, p=1, score=0.485429 - 0.1s
[CV] n_neighbors=2, weights=distance, p=1 ............................
[CV] ... n_neighbors=2, weights=distance, p=1, score=0.432542 - 0.1s
[CV] n_neighbors=2, weights=distance, p=1 ............................
[CV] ... n_neighbors=2, weights=distance, p=1, score=0.543089 - 0.1s
[CV] n_neighbors=2, weights=uniform, p=2 .............................
[CV] .... n_neighbors=2, weights=uniform, p=2, score=0.477189 - 0.1s
[CV] n_neighbors=2, weights=uniform, p=2 .............................
[CV] .... n_neighbors=2, weights=uniform, p=2, score=0.425381 - 0.1s
[CV] n_neighbors=2, weights=uniform, p=2 .............................
[CV] .... n_neighbors=2, weights=uniform, p=2, score=0.480638 - 0.1s
[CV] n_neighbors=2, weights=distance, p=2 ............................
[CV] ... n_neighbors=2, weights=distance, p=2, score=0.476559 - 0.1s
[CV] n_neighbors=2, weights=distance, p=2 ............................
[CV] ... n_neighbors=2, weights=distance, p=2, score=0.422149 - 0.1s
[CV] n_neighbors=2, weights=distance, p=2 ............................
[CV] ... n_neighbors=2, weights=distance, p=2, score=0.493138 - 0.1s
[CV] n_neighbors=4, weights=uniform, p=1 .............................
[CV] .... n_neighbors=4, weights=uniform, p=1, score=0.633993 - 0.1s
[CV] n_neighbors=4, weights=uniform, p=1 .............................
[CV] .... n_neighbors=4, weights=uniform, p=1, score=0.492589 - 0.1s
[CV] n_neighbors=4, weights=uniform, p=1 .............................
[CV] .... n_neighbors=4, weights=uniform, p=1, score=0.578333 - 0.1s
[CV] n_neighbors=4, weights=distance, p=1 ............................
[CV] ... n_neighbors=4, weights=distance, p=1, score=0.624790 - 0.1s
[CV] n_neighbors=4, weights=distance, p=1 ............................
[CV] ... n_neighbors=4, weights=distance, p=1, score=0.490200 - 0.1s
[CV] n_neighbors=4, weights=distance, p=1 ............................
[CV] ... n_neighbors=4, weights=distance, p=1, score=0.588382 - 0.1s
[CV] n_neighbors=4, weights=uniform, p=2 .............................
[CV] .... n_neighbors=4, weights=uniform, p=2, score=0.580770 - 0.1s
[CV] n_neighbors=4, weights=uniform, p=2 .............................
[CV] .... n_neighbors=4, weights=uniform, p=2, score=0.474520 - 0.1s
[Parallel(n_jobs=1)]: Done 1 jobs | elapsed: 0.1s
[Parallel(n_jobs=1)]: Done 32 jobs | elapsed: 2.3s
[CV] n_neighbors=4, weights=uniform, p=2 .............................
[CV] .... n_neighbors=4, weights=uniform, p=2, score=0.548515 - 0.1s
[CV] n_neighbors=4, weights=distance, p=2 ............................
[CV] ... n_neighbors=4, weights=distance, p=2, score=0.578571 - 0.1s
[CV] n_neighbors=4, weights=distance, p=2 ............................
[CV] ... n_neighbors=4, weights=distance, p=2, score=0.477596 - 0.1s
[CV] n_neighbors=4, weights=distance, p=2 ............................
[CV] ... n_neighbors=4, weights=distance, p=2, score=0.555004 - 0.1s
[CV] n_neighbors=8, weights=uniform, p=1 .............................
[CV] .... n_neighbors=8, weights=uniform, p=1, score=0.672138 - 0.1s
[CV] n_neighbors=8, weights=uniform, p=1 .............................
[CV] .... n_neighbors=8, weights=uniform, p=1, score=0.531075 - 0.1s
[CV] n_neighbors=8, weights=uniform, p=1 .............................
[CV] .... n_neighbors=8, weights=uniform, p=1, score=0.579289 - 0.1s
[CV] n_neighbors=8, weights=distance, p=1 ............................
[CV] ... n_neighbors=8, weights=distance, p=1, score=0.668918 - 0.1s
[CV] n_neighbors=8, weights=distance, p=1 ............................
[CV] ... n_neighbors=8, weights=distance, p=1, score=0.529387 - 0.1s
[CV] n_neighbors=8, weights=distance, p=1 ............................
[CV] ... n_neighbors=8, weights=distance, p=1, score=0.590409 - 0.1s
[CV] n_neighbors=8, weights=uniform, p=2 .............................
[CV] .... n_neighbors=8, weights=uniform, p=2, score=0.644184 - 0.1s
[CV] n_neighbors=8, weights=uniform, p=2 .............................
[CV] .... n_neighbors=8, weights=uniform, p=2, score=0.518760 - 0.1s
[CV] n_neighbors=8, weights=uniform, p=2 .............................
[CV] .... n_neighbors=8, weights=uniform, p=2, score=0.568318 - 0.1s
[CV] n_neighbors=8, weights=distance, p=2 ............................
[CV] ... n_neighbors=8, weights=distance, p=2, score=0.642168 - 0.1s
[CV] n_neighbors=8, weights=distance, p=2 ............................
[CV] ... n_neighbors=8, weights=distance, p=2, score=0.519340 - 0.1s
[CV] n_neighbors=8, weights=distance, p=2 ............................
[CV] ... n_neighbors=8, weights=distance, p=2, score=0.575653 - 0.1s
[CV] n_neighbors=16, weights=uniform, p=1 ............................
[CV] ... n_neighbors=16, weights=uniform, p=1, score=0.673511 - 0.1s
[CV] n_neighbors=16, weights=uniform, p=1 ............................
[CV] ... n_neighbors=16, weights=uniform, p=1, score=0.528231 - 0.1s
[CV] n_neighbors=16, weights=uniform, p=1 ............................
[CV] ... n_neighbors=16, weights=uniform, p=1, score=0.569990 - 0.1s
[CV] n_neighbors=16, weights=distance, p=1 ...........................
[CV] .. n_neighbors=16, weights=distance, p=1, score=0.676755 - 0.1s
[CV] n_neighbors=16, weights=distance, p=1 ...........................
[CV] .. n_neighbors=16, weights=distance, p=1, score=0.531761 - 0.1s
[CV] n_neighbors=16, weights=distance, p=1 ...........................
[CV] .. n_neighbors=16, weights=distance, p=1, score=0.580985 - 0.2s
[CV] n_neighbors=16, weights=uniform, p=2 ............................
[CV] ... n_neighbors=16, weights=uniform, p=2, score=0.641447 - 0.1s
[CV] n_neighbors=16, weights=uniform, p=2 ............................
[CV] ... n_neighbors=16, weights=uniform, p=2, score=0.508253 - 0.1s
[CV] n_neighbors=16, weights=uniform, p=2 ............................
[CV] ... n_neighbors=16, weights=uniform, p=2, score=0.553695 - 0.1s
[CV] n_neighbors=16, weights=distance, p=2 ...........................
[CV] .. n_neighbors=16, weights=distance, p=2, score=0.647310 - 0.1s
[CV] n_neighbors=16, weights=distance, p=2 ...........................
[CV] .. n_neighbors=16, weights=distance, p=2, score=0.514451 - 0.1s
[CV] n_neighbors=16, weights=distance, p=2 ...........................
[CV] .. n_neighbors=16, weights=distance, p=2, score=0.564455 - 0.1s
[CV] n_neighbors=32, weights=uniform, p=1 ............................
[CV] ... n_neighbors=32, weights=uniform, p=1, score=0.646736 - 0.2s
[CV] n_neighbors=32, weights=uniform, p=1 ............................
[CV] ... n_neighbors=32, weights=uniform, p=1, score=0.506124 - 0.1s
[CV] n_neighbors=32, weights=uniform, p=1 ............................
[CV] ... n_neighbors=32, weights=uniform, p=1, score=0.550792 - 0.1s
[CV] n_neighbors=32, weights=distance, p=1 ...........................
[CV] .. n_neighbors=32, weights=distance, p=1, score=0.655717 - 0.1s
[CV] n_neighbors=32, weights=distance, p=1 ...........................
[CV] .. n_neighbors=32, weights=distance, p=1, score=0.515222 - 0.1s
[CV] n_neighbors=32, weights=distance, p=1 ...........................
[CV] .. n_neighbors=32, weights=distance, p=1, score=0.561142 - 0.1s
[CV] n_neighbors=32, weights=uniform, p=2 ............................
[CV] ... n_neighbors=32, weights=uniform, p=2, score=0.628614 - 0.1s
[CV] n_neighbors=32, weights=uniform, p=2 ............................
[CV] ... n_neighbors=32, weights=uniform, p=2, score=0.476393 - 0.1s
[CV] n_neighbors=32, weights=uniform, p=2 ............................
[CV] ... n_neighbors=32, weights=uniform, p=2, score=0.531729 - 0.1s
[CV] n_neighbors=32, weights=distance, p=2 ...........................
[CV] .. n_neighbors=32, weights=distance, p=2, score=0.640269 - 0.1s
[CV] n_neighbors=32, weights=distance, p=2 ...........................
[CV] .. n_neighbors=32, weights=distance, p=2, score=0.488949 - 0.1s
[CV] n_neighbors=32, weights=distance, p=2 ...........................
[CV] .. n_neighbors=32, weights=distance, p=2, score=0.544440 - 0.1s
[CV] n_neighbors=64, weights=uniform, p=1 ............................
[CV] ... n_neighbors=64, weights=uniform, p=1, score=0.603630 - 0.2s
[CV] n_neighbors=64, weights=uniform, p=1 ............................
[CV] ... n_neighbors=64, weights=uniform, p=1, score=0.465967 - 0.2s
[CV] n_neighbors=64, weights=uniform, p=1 ............................
[CV] ... n_neighbors=64, weights=uniform, p=1, score=0.517317 - 0.2s
[CV] n_neighbors=64, weights=distance, p=1 ...........................
[CV] .. n_neighbors=64, weights=distance, p=1, score=0.620060 - 0.2s
[CV] n_neighbors=64, weights=distance, p=1 ...........................
[CV] .. n_neighbors=64, weights=distance, p=1, score=0.481149 - 0.2s
[CV] n_neighbors=64, weights=distance, p=1 ...........................
[CV] .. n_neighbors=64, weights=distance, p=1, score=0.530917 - 0.2s
[CV] n_neighbors=64, weights=uniform, p=2 ............................
[CV] ... n_neighbors=64, weights=uniform, p=2, score=0.580119 - 0.2s
[CV] n_neighbors=64, weights=uniform, p=2 ............................
[CV] ... n_neighbors=64, weights=uniform, p=2, score=0.435963 - 0.2s
[CV] n_neighbors=64, weights=uniform, p=2 ............................
[CV] ... n_neighbors=64, weights=uniform, p=2, score=0.496916 - 0.2s
[CV] n_neighbors=64, weights=distance, p=2 ...........................
[CV] .. n_neighbors=64, weights=distance, p=2, score=0.600041 - 0.2s
[CV] n_neighbors=64, weights=distance, p=2 ...........................
[CV] .. n_neighbors=64, weights=distance, p=2, score=0.454176 - 0.2s
[CV] n_neighbors=64, weights=distance, p=2 ...........................
[CV] .. n_neighbors=64, weights=distance, p=2, score=0.513707 - 0.2s
Fitting 3 folds for each of 28 candidates, totalling 84 fits
[CV] n_neighbors=1, weights=uniform, p=1 .............................
[CV] .... n_neighbors=1, weights=uniform, p=1, score=0.366840 - 0.1s
[Parallel(n_jobs=1)]: Done 84 out of 84 | elapsed: 8.6s finished
[Parallel(n_jobs=1)]: Done 1 jobs | elapsed: 0.1s
[CV] n_neighbors=1, weights=uniform, p=1 .............................
[CV] .... n_neighbors=1, weights=uniform, p=1, score=0.212755 - 0.1s
[CV] n_neighbors=1, weights=uniform, p=1 .............................
[CV] .... n_neighbors=1, weights=uniform, p=1, score=0.161112 - 0.1s
[CV] n_neighbors=1, weights=distance, p=1 ............................
[CV] ... n_neighbors=1, weights=distance, p=1, score=0.366840 - 0.1s
[CV] n_neighbors=1, weights=distance, p=1 ............................
[CV] ... n_neighbors=1, weights=distance, p=1, score=0.212755 - 0.1s
[CV] n_neighbors=1, weights=distance, p=1 ............................
[CV] ... n_neighbors=1, weights=distance, p=1, score=0.161112 - 0.1s
[CV] n_neighbors=1, weights=uniform, p=2 .............................
[CV] .... n_neighbors=1, weights=uniform, p=2, score=0.305392 - 0.0s
[CV] n_neighbors=1, weights=uniform, p=2 .............................
[CV] .... n_neighbors=1, weights=uniform, p=2, score=0.258912 - 0.0s
[CV] n_neighbors=1, weights=uniform, p=2 .............................
[CV] .... n_neighbors=1, weights=uniform, p=2, score=0.111435 - 0.0s
[CV] n_neighbors=1, weights=distance, p=2 ............................
[CV] ... n_neighbors=1, weights=distance, p=2, score=0.305392 - 0.0s
[CV] n_neighbors=1, weights=distance, p=2 ............................
[CV] ... n_neighbors=1, weights=distance, p=2, score=0.258912 - 0.0s
[CV] n_neighbors=1, weights=distance, p=2 ............................
[CV] ... n_neighbors=1, weights=distance, p=2, score=0.111435 - 0.0s
[CV] n_neighbors=2, weights=uniform, p=1 .............................
[CV] .... n_neighbors=2, weights=uniform, p=1, score=0.527130 - 0.1s
[CV] n_neighbors=2, weights=uniform, p=1 .............................
[CV] .... n_neighbors=2, weights=uniform, p=1, score=0.396752 - 0.1s
[CV] n_neighbors=2, weights=uniform, p=1 .............................
[CV] .... n_neighbors=2, weights=uniform, p=1, score=0.371503 - 0.1s
[CV] n_neighbors=2, weights=distance, p=1 ............................
[CV] ... n_neighbors=2, weights=distance, p=1, score=0.521715 - 0.1s
[CV] n_neighbors=2, weights=distance, p=1 ............................
[CV] ... n_neighbors=2, weights=distance, p=1, score=0.389934 - 0.1s
[CV] n_neighbors=2, weights=distance, p=1 ............................
[CV] ... n_neighbors=2, weights=distance, p=1, score=0.365628 - 0.1s
[CV] n_neighbors=2, weights=uniform, p=2 .............................
[CV] .... n_neighbors=2, weights=uniform, p=2, score=0.495959 - 0.1s
[CV] n_neighbors=2, weights=uniform, p=2 .............................
[CV] .... n_neighbors=2, weights=uniform, p=2, score=0.383286 - 0.0s
[CV] n_neighbors=2, weights=uniform, p=2 .............................
[CV] .... n_neighbors=2, weights=uniform, p=2, score=0.414588 - 0.0s
[CV] n_neighbors=2, weights=distance, p=2 ............................
[CV] ... n_neighbors=2, weights=distance, p=2, score=0.490514 - 0.0s
[CV] n_neighbors=2, weights=distance, p=2 ............................
[CV] ... n_neighbors=2, weights=distance, p=2, score=0.385606 - 0.0s
[CV] n_neighbors=2, weights=distance, p=2 ............................
[CV] ... n_neighbors=2, weights=distance, p=2, score=0.406248 - 0.0s
[CV] n_neighbors=4, weights=uniform, p=1 .............................
[CV] .... n_neighbors=4, weights=uniform, p=1, score=0.561143 - 0.1s
[CV] n_neighbors=4, weights=uniform, p=1 .............................
[CV] .... n_neighbors=4, weights=uniform, p=1, score=0.512626 - 0.1s
[CV] n_neighbors=4, weights=uniform, p=1 .............................
[CV] .... n_neighbors=4, weights=uniform, p=1, score=0.514784 - 0.1s
[CV] n_neighbors=4, weights=distance, p=1 ............................
[CV] ... n_neighbors=4, weights=distance, p=1, score=0.564866 - 0.1s
[CV] n_neighbors=4, weights=distance, p=1 ............................
[CV] ... n_neighbors=4, weights=distance, p=1, score=0.506940 - 0.1s
[CV] n_neighbors=4, weights=distance, p=1 ............................
[CV] ... n_neighbors=4, weights=distance, p=1, score=0.507514 - 0.1s
[CV] n_neighbors=4, weights=uniform, p=2 .............................
[CV] .... n_neighbors=4, weights=uniform, p=2, score=0.579454 - 0.1s
[CV] n_neighbors=4, weights=uniform, p=2 .............................
[CV] .... n_neighbors=4, weights=uniform, p=2, score=0.501662 - 0.1s
[CV] n_neighbors=4, weights=uniform, p=2 .............................
[CV] .... n_neighbors=4, weights=uniform, p=2, score=0.508905 - 0.1s
[CV] n_neighbors=4, weights=distance, p=2 ............................
[CV] ... n_neighbors=4, weights=distance, p=2, score=0.576769 - 0.1s
[CV] n_neighbors=4, weights=distance, p=2 ............................
[CV] ... n_neighbors=4, weights=distance, p=2, score=0.500453 - 0.0s
[CV] n_neighbors=4, weights=distance, p=2 ............................
[CV] ... n_neighbors=4, weights=distance, p=2, score=0.500915 - 0.1s
[CV] n_neighbors=8, weights=uniform, p=1 .............................
[CV] .... n_neighbors=8, weights=uniform, p=1, score=0.630524 - 0.1s
[CV] n_neighbors=8, weights=uniform, p=1 .............................
[CV] .... n_neighbors=8, weights=uniform, p=1, score=0.541804 - 0.1s
[CV] n_neighbors=8, weights=uniform, p=1 .............................
[CV] .... n_neighbors=8, weights=uniform, p=1, score=0.533430 - 0.1s
[CV] n_neighbors=8, weights=distance, p=1 ............................
[CV] ... n_neighbors=8, weights=distance, p=1, score=0.629100 - 0.1s
[CV] n_neighbors=8, weights=distance, p=1 ............................
[CV] ... n_neighbors=8, weights=distance, p=1, score=0.540752 - 0.1s
[CV] n_neighbors=8, weights=distance, p=1 ............................
[CV] ... n_neighbors=8, weights=distance, p=1, score=0.533419 - 0.1s
[CV] n_neighbors=8, weights=uniform, p=2 .............................
[CV] .... n_neighbors=8, weights=uniform, p=2, score=0.611447 - 0.1s
[CV] n_neighbors=8, weights=uniform, p=2 .............................
[CV] .... n_neighbors=8, weights=uniform, p=2, score=0.523236 - 0.1s
[CV] n_neighbors=8, weights=uniform, p=2 .............................
[CV] .... n_neighbors=8, weights=uniform, p=2, score=0.547700 - 0.1s
[CV] n_neighbors=8, weights=distance, p=2 ............................
[CV] ... n_neighbors=8, weights=distance, p=2, score=0.612023 - 0.1s
[CV] n_neighbors=8, weights=distance, p=2 ............................
[CV] ... n_neighbors=8, weights=distance, p=2, score=0.526124 - 0.1s
[CV] n_neighbors=8, weights=distance, p=2 ............................
[CV] ... n_neighbors=8, weights=distance, p=2, score=0.545318 - 0.1s
[CV] n_neighbors=16, weights=uniform, p=1 ............................
[CV] ... n_neighbors=16, weights=uniform, p=1, score=0.620134 - 0.1s
[CV] n_neighbors=16, weights=uniform, p=1 ............................
[CV] ... n_neighbors=16, weights=uniform, p=1, score=0.549335 - 0.1s
[CV] n_neighbors=16, weights=uniform, p=1 ............................
[CV] ... n_neighbors=16, weights=uniform, p=1, score=0.544123 - 0.1s
[CV] n_neighbors=16, weights=distance, p=1 ...........................
[CV] .. n_neighbors=16, weights=distance, p=1, score=0.623792 - 0.1s
[CV] n_neighbors=16, weights=distance, p=1 ...........................
[CV] .. n_neighbors=16, weights=distance, p=1, score=0.552596 - 0.1s
[CV] n_neighbors=16, weights=distance, p=1 ...........................
[CV] .. n_neighbors=16, weights=distance, p=1, score=0.546843 - 0.1s
[CV] n_neighbors=16, weights=uniform, p=2 ............................
[CV] ... n_neighbors=16, weights=uniform, p=2, score=0.589439 - 0.1s
[CV] n_neighbors=16, weights=uniform, p=2 ............................
[CV] ... n_neighbors=16, weights=uniform, p=2, score=0.525132 - 0.1s
[CV] n_neighbors=16, weights=uniform, p=2 ............................
[CV] ... n_neighbors=16, weights=uniform, p=2, score=0.548151 - 0.1s
[CV] n_neighbors=16, weights=distance, p=2 ...........................
[CV] .. n_neighbors=16, weights=distance, p=2, score=0.596971 - 0.1s
[CV] n_neighbors=16, weights=distance, p=2 ...........................
[CV] .. n_neighbors=16, weights=distance, p=2, score=0.531575 - 0.1s
[CV] n_neighbors=16, weights=distance, p=2 ...........................
[CV] .. n_neighbors=16, weights=distance, p=2, score=0.550490 - 0.1s
[CV] n_neighbors=32, weights=uniform, p=1 ............................
[CV] ... n_neighbors=32, weights=uniform, p=1, score=0.594929 - 0.2s
[CV] n_neighbors=32, weights=uniform, p=1 ............................
[CV] ... n_neighbors=32, weights=uniform, p=1, score=0.539576 - 0.1s
[CV] n_neighbors=32, weights=uniform, p=1 ............................
[CV] ... n_neighbors=32, weights=uniform, p=1, score=0.523016 - 0.1s
[CV] n_neighbors=32, weights=distance, p=1 ...........................
[CV] .. n_neighbors=32, weights=distance, p=1, score=0.603162 - 0.1s
[CV] n_neighbors=32, weights=distance, p=1 ...........................
[CV] .. n_neighbors=32, weights=distance, p=1, score=0.545619 - 0.1s
[CV] n_neighbors=32, weights=distance, p=1 ...........................
[CV] .. n_neighbors=32, weights=distance, p=1, score=0.531487 - 0.1s
[CV] n_neighbors=32, weights=uniform, p=2 ............................
[CV] ... n_neighbors=32, weights=uniform, p=2, score=0.564816 - 0.1s
[CV] n_neighbors=32, weights=uniform, p=2 ............................
[CV] ... n_neighbors=32, weights=uniform, p=2, score=0.516988 - 0.1s
[CV] n_neighbors=32, weights=uniform, p=2 ............................
[CV] ... n_neighbors=32, weights=uniform, p=2, score=0.510228 - 0.1s
[CV] n_neighbors=32, weights=distance, p=2 ...........................
[CV] .. n_neighbors=32, weights=distance, p=2, score=0.576399 - 0.1s
[CV] n_neighbors=32, weights=distance, p=2 ...........................
[CV] .. n_neighbors=32, weights=distance, p=2, score=0.525666 - 0.1s
[CV] n_neighbors=32, weights=distance, p=2 ...........................
[CV] .. n_neighbors=32, weights=distance, p=2, score=0.521688 - 0.1s
[CV] n_neighbors=64, weights=uniform, p=1 ............................
[CV] ... n_neighbors=64, weights=uniform, p=1, score=0.554253 - 0.2s
[CV] n_neighbors=64, weights=uniform, p=1 ............................
[CV] ... n_neighbors=64, weights=uniform, p=1, score=0.518773 - 0.2s
[CV] n_neighbors=64, weights=uniform, p=1 ............................
[CV] ... n_neighbors=64, weights=uniform, p=1, score=0.483602 - 0.2s
[CV] n_neighbors=64, weights=distance, p=1 ...........................
[CV] .. n_neighbors=64, weights=distance, p=1, score=0.567943 - 0.2s
[CV] n_neighbors=64, weights=distance, p=1 ...........................
[CV] .. n_neighbors=64, weights=distance, p=1, score=0.529225 - 0.2s
[CV] n_neighbors=64, weights=distance, p=1 ...........................
[CV] .. n_neighbors=64, weights=distance, p=1, score=0.496972 - 0.2s
[CV] n_neighbors=64, weights=uniform, p=2 ............................
[CV] ... n_neighbors=64, weights=uniform, p=2, score=0.520937 - 0.1s
[CV] n_neighbors=64, weights=uniform, p=2 ............................
[CV] ... n_neighbors=64, weights=uniform, p=2, score=0.488726 - 0.1s
[CV] n_neighbors=64, weights=uniform, p=2 ............................
[CV] ... n_neighbors=64, weights=uniform, p=2, score=0.463044 - 0.2s
[CV] n_neighbors=64, weights=distance, p=2 ...........................
[CV] .. n_neighbors=64, weights=distance, p=2, score=0.537749 - 0.1s
[CV] n_neighbors=64, weights=distance, p=2 ...........................
[CV] .. n_neighbors=64, weights=distance, p=2, score=0.501882 - 0.1s
[CV] n_neighbors=64, weights=distance, p=2 ...........................
[CV] .. n_neighbors=64, weights=distance, p=2, score=0.480092 - 0.2s
[Parallel(n_jobs=1)]: Done 32 jobs | elapsed: 2.0s
[Parallel(n_jobs=1)]: Done 84 out of 84 | elapsed: 8.0s finished
Fitting 3 folds for each of 28 candidates, totalling 84 fits
[CV] n_neighbors=1, weights=uniform, p=1 .............................
[CV] .... n_neighbors=1, weights=uniform, p=1, score=0.379055 - 0.1s
[CV] n_neighbors=1, weights=uniform, p=1 .............................
[CV] .... n_neighbors=1, weights=uniform, p=1, score=0.325685 - 0.1s
[CV] n_neighbors=1, weights=uniform, p=1 .............................
[CV] .... n_neighbors=1, weights=uniform, p=1, score=0.448212 - 0.1s
[CV] n_neighbors=1, weights=distance, p=1 ............................
[CV] ... n_neighbors=1, weights=distance, p=1, score=0.379055 - 0.1s
[CV] n_neighbors=1, weights=distance, p=1 ............................
[CV] ... n_neighbors=1, weights=distance, p=1, score=0.325685 - 0.1s
[CV] n_neighbors=1, weights=distance, p=1 ............................
[CV] ... n_neighbors=1, weights=distance, p=1, score=0.448212 - 0.1s
[CV] n_neighbors=1, weights=uniform, p=2 .............................
[CV] .... n_neighbors=1, weights=uniform, p=2, score=0.357544 - 0.0s
[CV] n_neighbors=1, weights=uniform, p=2 .............................
[CV] .... n_neighbors=1, weights=uniform, p=2, score=0.245855 - 0.0s
[CV] n_neighbors=1, weights=uniform, p=2 .............................
[CV] .... n_neighbors=1, weights=uniform, p=2, score=0.355254 - 0.0s
[CV] n_neighbors=1, weights=distance, p=2 ............................
[CV] ... n_neighbors=1, weights=distance, p=2, score=0.357544 - 0.0s
[CV] n_neighbors=1, weights=distance, p=2 ............................
[CV] ... n_neighbors=1, weights=distance, p=2, score=0.245855 - 0.0s
[CV] n_neighbors=1, weights=distance, p=2 ............................
[CV] ... n_neighbors=1, weights=distance, p=2, score=0.355254 - 0.0s
[CV] n_neighbors=2, weights=uniform, p=1 .............................
[CV] .... n_neighbors=2, weights=uniform, p=1, score=0.543666 - 0.1s
[CV] n_neighbors=2, weights=uniform, p=1 .............................
[CV] .... n_neighbors=2, weights=uniform, p=1, score=0.562960 - 0.1s
[CV] n_neighbors=2, weights=uniform, p=1 .............................
[CV] .... n_neighbors=2, weights=uniform, p=1, score=0.527016 - 0.1s
[CV] n_neighbors=2, weights=distance, p=1 ............................
[CV] ... n_neighbors=2, weights=distance, p=1, score=0.541907 - 0.2s
[CV] n_neighbors=2, weights=distance, p=1 ............................
[CV] ... n_neighbors=2, weights=distance, p=1, score=0.563275 - 0.1s
[CV] n_neighbors=2, weights=distance, p=1 ............................
[CV] ... n_neighbors=2, weights=distance, p=1, score=0.526188 - 0.2s
[CV] n_neighbors=2, weights=uniform, p=2 .............................
[CV] .... n_neighbors=2, weights=uniform, p=2, score=0.499947 - 0.1s
[CV] n_neighbors=2, weights=uniform, p=2 .............................
[CV] .... n_neighbors=2, weights=uniform, p=2, score=0.506685 - 0.1s
[CV] n_neighbors=2, weights=uniform, p=2 .............................
[CV] .... n_neighbors=2, weights=uniform, p=2, score=0.489263 - 0.1s
[CV] n_neighbors=2, weights=distance, p=2 ............................
[CV] ... n_neighbors=2, weights=distance, p=2, score=0.503108 - 0.0s
[CV] n_neighbors=2, weights=distance, p=2 ............................
[CV] ... n_neighbors=2, weights=distance, p=2, score=0.506580 - 0.0s
[CV] n_neighbors=2, weights=distance, p=2 ............................
[CV] ... n_neighbors=2, weights=distance, p=2, score=0.487055 - 0.1s
[CV] n_neighbors=4, weights=uniform, p=1 .............................
[CV] .... n_neighbors=4, weights=uniform, p=1, score=0.585816 - 0.1s
[CV] n_neighbors=4, weights=uniform, p=1 .............................
[CV] .... n_neighbors=4, weights=uniform, p=1, score=0.616324 - 0.1s
[CV] n_neighbors=4, weights=uniform, p=1 .............................
[CV] .... n_neighbors=4, weights=uniform, p=1, score=0.547337 - 0.1s
[CV] n_neighbors=4, weights=distance, p=1 ............................
[CV] ... n_neighbors=4, weights=distance, p=1, score=0.590059 - 0.1s
[CV] n_neighbors=4, weights=distance, p=1 ............................
[CV] ... n_neighbors=4, weights=distance, p=1, score=0.619601 - 0.1s
[CV] n_neighbors=4, weights=distance, p=1 ............................
[CV] ... n_neighbors=4, weights=distance, p=1, score=0.551976 - 0.1s
[CV] n_neighbors=4, weights=uniform, p=2 .............................
[CV] .... n_neighbors=4, weights=uniform, p=2, score=0.558909 - 0.1s
[Parallel(n_jobs=1)]: Done 1 jobs | elapsed: 0.1s
[Parallel(n_jobs=1)]: Done 32 jobs | elapsed: 2.6s
[CV] n_neighbors=4, weights=uniform, p=2 .............................
[CV] .... n_neighbors=4, weights=uniform, p=2, score=0.586740 - 0.0s
[CV] n_neighbors=4, weights=uniform, p=2 .............................
[CV] .... n_neighbors=4, weights=uniform, p=2, score=0.533712 - 0.0s
[CV] n_neighbors=4, weights=distance, p=2 ............................
[CV] ... n_neighbors=4, weights=distance, p=2, score=0.564038 - 0.1s
[CV] n_neighbors=4, weights=distance, p=2 ............................
[CV] ... n_neighbors=4, weights=distance, p=2, score=0.592380 - 0.1s
[CV] n_neighbors=4, weights=distance, p=2 ............................
[CV] ... n_neighbors=4, weights=distance, p=2, score=0.534632 - 0.1s
[CV] n_neighbors=8, weights=uniform, p=1 .............................
[CV] .... n_neighbors=8, weights=uniform, p=1, score=0.607033 - 0.1s
[CV] n_neighbors=8, weights=uniform, p=1 .............................
[CV] .... n_neighbors=8, weights=uniform, p=1, score=0.636959 - 0.1s
[CV] n_neighbors=8, weights=uniform, p=1 .............................
[CV] .... n_neighbors=8, weights=uniform, p=1, score=0.566860 - 0.1s
[CV] n_neighbors=8, weights=distance, p=1 ............................
[CV] ... n_neighbors=8, weights=distance, p=1, score=0.609663 - 0.1s
[CV] n_neighbors=8, weights=distance, p=1 ............................
[CV] ... n_neighbors=8, weights=distance, p=1, score=0.642954 - 0.1s
[CV] n_neighbors=8, weights=distance, p=1 ............................
[CV] ... n_neighbors=8, weights=distance, p=1, score=0.571181 - 0.1s
[CV] n_neighbors=8, weights=uniform, p=2 .............................
[CV] .... n_neighbors=8, weights=uniform, p=2, score=0.577733 - 0.1s
[CV] n_neighbors=8, weights=uniform, p=2 .............................
[CV] .... n_neighbors=8, weights=uniform, p=2, score=0.601837 - 0.1s
[CV] n_neighbors=8, weights=uniform, p=2 .............................
[CV] .... n_neighbors=8, weights=uniform, p=2, score=0.567664 - 0.1s
[CV] n_neighbors=8, weights=distance, p=2 ............................
[CV] ... n_neighbors=8, weights=distance, p=2, score=0.582281 - 0.1s
[CV] n_neighbors=8, weights=distance, p=2 ............................
[CV] ... n_neighbors=8, weights=distance, p=2, score=0.609667 - 0.1s
[CV] n_neighbors=8, weights=distance, p=2 ............................
[CV] ... n_neighbors=8, weights=distance, p=2, score=0.570864 - 0.1s
[CV] n_neighbors=16, weights=uniform, p=1 ............................
[CV] ... n_neighbors=16, weights=uniform, p=1, score=0.595771 - 0.1s
[CV] n_neighbors=16, weights=uniform, p=1 ............................
[CV] ... n_neighbors=16, weights=uniform, p=1, score=0.643563 - 0.1s
[CV] n_neighbors=16, weights=uniform, p=1 ............................
[CV] ... n_neighbors=16, weights=uniform, p=1, score=0.557306 - 0.1s
[CV] n_neighbors=16, weights=distance, p=1 ...........................
[CV] .. n_neighbors=16, weights=distance, p=1, score=0.601276 - 0.1s
[CV] n_neighbors=16, weights=distance, p=1 ...........................
[CV] .. n_neighbors=16, weights=distance, p=1, score=0.650764 - 0.1s
[CV] n_neighbors=16, weights=distance, p=1 ...........................
[CV] .. n_neighbors=16, weights=distance, p=1, score=0.566170 - 0.1s
[CV] n_neighbors=16, weights=uniform, p=2 ............................
[CV] ... n_neighbors=16, weights=uniform, p=2, score=0.600424 - 0.1s
[CV] n_neighbors=16, weights=uniform, p=2 ............................
[CV] ... n_neighbors=16, weights=uniform, p=2, score=0.608908 - 0.1s
[CV] n_neighbors=16, weights=uniform, p=2 ............................
[CV] ... n_neighbors=16, weights=uniform, p=2, score=0.540059 - 0.1s
[CV] n_neighbors=16, weights=distance, p=2 ...........................
[CV] .. n_neighbors=16, weights=distance, p=2, score=0.604398 - 0.1s
[CV] n_neighbors=16, weights=distance, p=2 ...........................
[CV] .. n_neighbors=16, weights=distance, p=2, score=0.619318 - 0.1s
[CV] n_neighbors=16, weights=distance, p=2 ...........................
[CV] .. n_neighbors=16, weights=distance, p=2, score=0.551891 - 0.1s
[CV] n_neighbors=32, weights=uniform, p=1 ............................
[CV] ... n_neighbors=32, weights=uniform, p=1, score=0.572135 - 0.1s
[CV] n_neighbors=32, weights=uniform, p=1 ............................
[CV] ... n_neighbors=32, weights=uniform, p=1, score=0.625080 - 0.1s
[CV] n_neighbors=32, weights=uniform, p=1 ............................
[CV] ... n_neighbors=32, weights=uniform, p=1, score=0.528708 - 0.1s
[CV] n_neighbors=32, weights=distance, p=1 ...........................
[CV] .. n_neighbors=32, weights=distance, p=1, score=0.581027 - 0.1s
[CV] n_neighbors=32, weights=distance, p=1 ...........................
[CV] .. n_neighbors=32, weights=distance, p=1, score=0.636830 - 0.1s
[CV] n_neighbors=32, weights=distance, p=1 ...........................
[CV] .. n_neighbors=32, weights=distance, p=1, score=0.542356 - 0.1s
[CV] n_neighbors=32, weights=uniform, p=2 ............................
[CV] ... n_neighbors=32, weights=uniform, p=2, score=0.573326 - 0.1s
[CV] n_neighbors=32, weights=uniform, p=2 ............................
[CV] ... n_neighbors=32, weights=uniform, p=2, score=0.592355 - 0.1s
[CV] n_neighbors=32, weights=uniform, p=2 ............................
[CV] ... n_neighbors=32, weights=uniform, p=2, score=0.508293 - 0.1s
[CV] n_neighbors=32, weights=distance, p=2 ...........................
[CV] .. n_neighbors=32, weights=distance, p=2, score=0.582864 - 0.1s
[CV] n_neighbors=32, weights=distance, p=2 ...........................
[CV] .. n_neighbors=32, weights=distance, p=2, score=0.606292 - 0.1s
[CV] n_neighbors=32, weights=distance, p=2 ...........................
[CV] .. n_neighbors=32, weights=distance, p=2, score=0.523887 - 0.1s
[CV] n_neighbors=64, weights=uniform, p=1 ............................
[CV] ... n_neighbors=64, weights=uniform, p=1, score=0.526793 - 0.2s
[CV] n_neighbors=64, weights=uniform, p=1 ............................
[CV] ... n_neighbors=64, weights=uniform, p=1, score=0.587347 - 0.2s
[CV] n_neighbors=64, weights=uniform, p=1 ............................
[CV] ... n_neighbors=64, weights=uniform, p=1, score=0.493921 - 0.2s
[CV] n_neighbors=64, weights=distance, p=1 ...........................
[CV] .. n_neighbors=64, weights=distance, p=1, score=0.541404 - 0.2s
[CV] n_neighbors=64, weights=distance, p=1 ...........................
[CV] .. n_neighbors=64, weights=distance, p=1, score=0.604533 - 0.2s
[CV] n_neighbors=64, weights=distance, p=1 ...........................
[CV] .. n_neighbors=64, weights=distance, p=1, score=0.509808 - 0.2s
[CV] n_neighbors=64, weights=uniform, p=2 ............................
[CV] ... n_neighbors=64, weights=uniform, p=2, score=0.520057 - 0.1s
[CV] n_neighbors=64, weights=uniform, p=2 ............................
[CV] ... n_neighbors=64, weights=uniform, p=2, score=0.557388 - 0.1s
[CV] n_neighbors=64, weights=uniform, p=2 ............................
[CV] ... n_neighbors=64, weights=uniform, p=2, score=0.474566 - 0.1s
[CV] n_neighbors=64, weights=distance, p=2 ...........................
[CV] .. n_neighbors=64, weights=distance, p=2, score=0.537441 - 0.1s
[CV] n_neighbors=64, weights=distance, p=2 ...........................
[CV] .. n_neighbors=64, weights=distance, p=2, score=0.576394 - 0.1s
[CV] n_neighbors=64, weights=distance, p=2 ...........................
[CV] .. n_neighbors=64, weights=distance, p=2, score=0.492497 - 0.1s
Fitting 3 folds for each of 28 candidates, totalling 84 fits
[CV] n_neighbors=1, weights=uniform, p=1 .............................
[CV] .... n_neighbors=1, weights=uniform, p=1, score=0.373428 - 0.1s
[Parallel(n_jobs=1)]: Done 84 out of 84 | elapsed: 8.2s finished
[Parallel(n_jobs=1)]: Done 1 jobs | elapsed: 0.1s
[CV] n_neighbors=1, weights=uniform, p=1 .............................
[CV] .... n_neighbors=1, weights=uniform, p=1, score=0.516508 - 0.1s
[CV] n_neighbors=1, weights=uniform, p=1 .............................
[CV] .... n_neighbors=1, weights=uniform, p=1, score=0.394755 - 0.1s
[CV] n_neighbors=1, weights=distance, p=1 ............................
[CV] ... n_neighbors=1, weights=distance, p=1, score=0.373428 - 0.1s
[CV] n_neighbors=1, weights=distance, p=1 ............................
[CV] ... n_neighbors=1, weights=distance, p=1, score=0.516508 - 0.1s
[CV] n_neighbors=1, weights=distance, p=1 ............................
[CV] ... n_neighbors=1, weights=distance, p=1, score=0.394755 - 0.1s
[CV] n_neighbors=1, weights=uniform, p=2 .............................
[CV] .... n_neighbors=1, weights=uniform, p=2, score=0.418356 - 0.0s
[CV] n_neighbors=1, weights=uniform, p=2 .............................
[CV] .... n_neighbors=1, weights=uniform, p=2, score=0.433360 - 0.0s
[CV] n_neighbors=1, weights=uniform, p=2 .............................
[CV] .... n_neighbors=1, weights=uniform, p=2, score=0.311718 - 0.0s
[CV] n_neighbors=1, weights=distance, p=2 ............................
[CV] ... n_neighbors=1, weights=distance, p=2, score=0.418356 - 0.0s
[CV] n_neighbors=1, weights=distance, p=2 ............................
[CV] ... n_neighbors=1, weights=distance, p=2, score=0.433360 - 0.0s
[CV] n_neighbors=1, weights=distance, p=2 ............................
[CV] ... n_neighbors=1, weights=distance, p=2, score=0.311718 - 0.0s
[CV] n_neighbors=2, weights=uniform, p=1 .............................
[CV] .... n_neighbors=2, weights=uniform, p=1, score=0.570426 - 0.1s
[CV] n_neighbors=2, weights=uniform, p=1 .............................
[CV] .... n_neighbors=2, weights=uniform, p=1, score=0.590276 - 0.1s
[CV] n_neighbors=2, weights=uniform, p=1 .............................
[CV] .... n_neighbors=2, weights=uniform, p=1, score=0.464194 - 0.1s
[CV] n_neighbors=2, weights=distance, p=1 ............................
[CV] ... n_neighbors=2, weights=distance, p=1, score=0.566151 - 0.1s
[CV] n_neighbors=2, weights=distance, p=1 ............................
[CV] ... n_neighbors=2, weights=distance, p=1, score=0.593994 - 0.1s
[CV] n_neighbors=2, weights=distance, p=1 ............................
[CV] ... n_neighbors=2, weights=distance, p=1, score=0.468845 - 0.1s
[CV] n_neighbors=2, weights=uniform, p=2 .............................
[CV] .... n_neighbors=2, weights=uniform, p=2, score=0.536848 - 0.0s
[CV] n_neighbors=2, weights=uniform, p=2 .............................
[CV] .... n_neighbors=2, weights=uniform, p=2, score=0.550853 - 0.0s
[CV] n_neighbors=2, weights=uniform, p=2 .............................
[CV] .... n_neighbors=2, weights=uniform, p=2, score=0.427502 - 0.0s
[CV] n_neighbors=2, weights=distance, p=2 ............................
[CV] ... n_neighbors=2, weights=distance, p=2, score=0.533900 - 0.0s
[CV] n_neighbors=2, weights=distance, p=2 ............................
[CV] ... n_neighbors=2, weights=distance, p=2, score=0.555079 - 0.0s
[CV] n_neighbors=2, weights=distance, p=2 ............................
[CV] ... n_neighbors=2, weights=distance, p=2, score=0.428395 - 0.1s
[CV] n_neighbors=4, weights=uniform, p=1 .............................
[CV] .... n_neighbors=4, weights=uniform, p=1, score=0.602173 - 0.1s
[CV] n_neighbors=4, weights=uniform, p=1 .............................
[CV] .... n_neighbors=4, weights=uniform, p=1, score=0.614549 - 0.1s
[CV] n_neighbors=4, weights=uniform, p=1 .............................
[CV] .... n_neighbors=4, weights=uniform, p=1, score=0.550025 - 0.1s
[CV] n_neighbors=4, weights=distance, p=1 ............................
[CV] ... n_neighbors=4, weights=distance, p=1, score=0.605795 - 0.1s
[CV] n_neighbors=4, weights=distance, p=1 ............................
[CV] ... n_neighbors=4, weights=distance, p=1, score=0.623072 - 0.1s
[CV] n_neighbors=4, weights=distance, p=1 ............................
[CV] ... n_neighbors=4, weights=distance, p=1, score=0.551842 - 0.1s
[CV] n_neighbors=4, weights=uniform, p=2 .............................
[CV] .... n_neighbors=4, weights=uniform, p=2, score=0.567797 - 0.0s
[CV] n_neighbors=4, weights=uniform, p=2 .............................
[CV] .... n_neighbors=4, weights=uniform, p=2, score=0.583312 - 0.0s
[CV] n_neighbors=4, weights=uniform, p=2 .............................
[CV] .... n_neighbors=4, weights=uniform, p=2, score=0.504971 - 0.1s
[CV] n_neighbors=4, weights=distance, p=2 ............................
[CV] ... n_neighbors=4, weights=distance, p=2, score=0.572381 - 0.0s
[CV] n_neighbors=4, weights=distance, p=2 ............................
[CV] ... n_neighbors=4, weights=distance, p=2, score=0.592415 - 0.0s
[CV] n_neighbors=4, weights=distance, p=2 ............................
[CV] ... n_neighbors=4, weights=distance, p=2, score=0.507798 - 0.1s
[CV] n_neighbors=8, weights=uniform, p=1 .............................
[CV] .... n_neighbors=8, weights=uniform, p=1, score=0.609261 - 0.1s
[CV] n_neighbors=8, weights=uniform, p=1 .............................
[CV] .... n_neighbors=8, weights=uniform, p=1, score=0.629509 - 0.1s
[CV] n_neighbors=8, weights=uniform, p=1 .............................
[CV] .... n_neighbors=8, weights=uniform, p=1, score=0.580335 - 0.1s
[CV] n_neighbors=8, weights=distance, p=1 ............................
[CV] ... n_neighbors=8, weights=distance, p=1, score=0.615232 - 0.1s
[CV] n_neighbors=8, weights=distance, p=1 ............................
[CV] ... n_neighbors=8, weights=distance, p=1, score=0.637223 - 0.1s
[CV] n_neighbors=8, weights=distance, p=1 ............................
[CV] ... n_neighbors=8, weights=distance, p=1, score=0.582190 - 0.1s
[CV] n_neighbors=8, weights=uniform, p=2 .............................
[CV] .... n_neighbors=8, weights=uniform, p=2, score=0.596067 - 0.1s
[CV] n_neighbors=8, weights=uniform, p=2 .............................
[CV] .... n_neighbors=8, weights=uniform, p=2, score=0.606727 - 0.0s
[CV] n_neighbors=8, weights=uniform, p=2 .............................
[CV] .... n_neighbors=8, weights=uniform, p=2, score=0.560923 - 0.1s
[CV] n_neighbors=8, weights=distance, p=2 ............................
[CV] ... n_neighbors=8, weights=distance, p=2, score=0.601066 - 0.1s
[CV] n_neighbors=8, weights=distance, p=2 ............................
[CV] ... n_neighbors=8, weights=distance, p=2, score=0.616967 - 0.1s
[CV] n_neighbors=8, weights=distance, p=2 ............................
[CV] ... n_neighbors=8, weights=distance, p=2, score=0.562751 - 0.1s
[CV] n_neighbors=16, weights=uniform, p=1 ............................
[CV] ... n_neighbors=16, weights=uniform, p=1, score=0.597328 - 0.1s
[CV] n_neighbors=16, weights=uniform, p=1 ............................
[CV] ... n_neighbors=16, weights=uniform, p=1, score=0.612360 - 0.1s
[CV] n_neighbors=16, weights=uniform, p=1 ............................
[CV] ... n_neighbors=16, weights=uniform, p=1, score=0.574209 - 0.1s
[CV] n_neighbors=16, weights=distance, p=1 ...........................
[CV] .. n_neighbors=16, weights=distance, p=1, score=0.606300 - 0.1s
[CV] n_neighbors=16, weights=distance, p=1 ...........................
[CV] .. n_neighbors=16, weights=distance, p=1, score=0.623701 - 0.1s
[CV] n_neighbors=16, weights=distance, p=1 ...........................
[CV] .. n_neighbors=16, weights=distance, p=1, score=0.579924 - 0.1s
[CV] n_neighbors=16, weights=uniform, p=2 ............................
[CV] ... n_neighbors=16, weights=uniform, p=2, score=0.579016 - 0.1s
[CV] n_neighbors=16, weights=uniform, p=2 ............................
[CV] ... n_neighbors=16, weights=uniform, p=2, score=0.588798 - 0.1s
[CV] n_neighbors=16, weights=uniform, p=2 ............................
[CV] ... n_neighbors=16, weights=uniform, p=2, score=0.548855 - 0.1s
[CV] n_neighbors=16, weights=distance, p=2 ...........................
[CV] .. n_neighbors=16, weights=distance, p=2, score=0.588803 - 0.1s
[CV] n_neighbors=16, weights=distance, p=2 ...........................
[CV] .. n_neighbors=16, weights=distance, p=2, score=0.602330 - 0.1s
[CV] n_neighbors=16, weights=distance, p=2 ...........................
[CV] .. n_neighbors=16, weights=distance, p=2, score=0.556352 - 0.1s
[CV] n_neighbors=32, weights=uniform, p=1 ............................
[CV] ... n_neighbors=32, weights=uniform, p=1, score=0.576030 - 0.2s
[CV] n_neighbors=32, weights=uniform, p=1 ............................
[CV] ... n_neighbors=32, weights=uniform, p=1, score=0.584344 - 0.1s
[CV] n_neighbors=32, weights=uniform, p=1 ............................
[CV] ... n_neighbors=32, weights=uniform, p=1, score=0.559424 - 0.2s
[CV] n_neighbors=32, weights=distance, p=1 ...........................
[CV] .. n_neighbors=32, weights=distance, p=1, score=0.586779 - 0.2s
[CV] n_neighbors=32, weights=distance, p=1 ...........................
[CV] .. n_neighbors=32, weights=distance, p=1, score=0.597356 - 0.1s
[CV] n_neighbors=32, weights=distance, p=1 ...........................
[CV] .. n_neighbors=32, weights=distance, p=1, score=0.567890 - 0.1s
[CV] n_neighbors=32, weights=uniform, p=2 ............................
[CV] ... n_neighbors=32, weights=uniform, p=2, score=0.559109 - 0.1s
[CV] n_neighbors=32, weights=uniform, p=2 ............................
[CV] ... n_neighbors=32, weights=uniform, p=2, score=0.558014 - 0.1s
[CV] n_neighbors=32, weights=uniform, p=2 ............................
[CV] ... n_neighbors=32, weights=uniform, p=2, score=0.532495 - 0.1s
[CV] n_neighbors=32, weights=distance, p=2 ...........................
[CV] .. n_neighbors=32, weights=distance, p=2, score=0.571127 - 0.1s
[CV] n_neighbors=32, weights=distance, p=2 ...........................
[CV] .. n_neighbors=32, weights=distance, p=2, score=0.574613 - 0.1s
[CV] n_neighbors=32, weights=distance, p=2 ...........................
[CV] .. n_neighbors=32, weights=distance, p=2, score=0.544507 - 0.1s
[CV] n_neighbors=64, weights=uniform, p=1 ............................
[CV] ... n_neighbors=64, weights=uniform, p=1, score=0.546000 - 0.2s
[CV] n_neighbors=64, weights=uniform, p=1 ............................
[CV] ... n_neighbors=64, weights=uniform, p=1, score=0.537047 - 0.2s
[CV] n_neighbors=64, weights=uniform, p=1 ............................
[CV] ... n_neighbors=64, weights=uniform, p=1, score=0.527349 - 0.2s
[CV] n_neighbors=64, weights=distance, p=1 ...........................
[CV] .. n_neighbors=64, weights=distance, p=1, score=0.559095 - 0.2s
[CV] n_neighbors=64, weights=distance, p=1 ...........................
[CV] .. n_neighbors=64, weights=distance, p=1, score=0.553990 - 0.2s
[CV] n_neighbors=64, weights=distance, p=1 ...........................
[CV] .. n_neighbors=64, weights=distance, p=1, score=0.539826 - 0.2s
[CV] n_neighbors=64, weights=uniform, p=2 ............................
[CV] ... n_neighbors=64, weights=uniform, p=2, score=0.523736 - 0.1s
[CV] n_neighbors=64, weights=uniform, p=2 ............................
[CV] ... n_neighbors=64, weights=uniform, p=2, score=0.513337 - 0.1s
[CV] n_neighbors=64, weights=uniform, p=2 ............................
[CV] ... n_neighbors=64, weights=uniform, p=2, score=0.501703 - 0.1s
[CV] n_neighbors=64, weights=distance, p=2 ...........................
[CV] .. n_neighbors=64, weights=distance, p=2, score=0.539196 - 0.1s
[CV] n_neighbors=64, weights=distance, p=2 ...........................
[CV] .. n_neighbors=64, weights=distance, p=2, score=0.534120 - 0.1s
[CV] n_neighbors=64, weights=distance, p=2 ...........................
[CV] .. n_neighbors=64, weights=distance, p=2, score=0.517668 - 0.1s
[Parallel(n_jobs=1)]: Done 32 jobs | elapsed: 1.9s
[Parallel(n_jobs=1)]: Done 84 out of 84 | elapsed: 7.6s finished
In [25]:
meanR2,errR2 = np.mean(R2),np.std(R2)
print("Mean score:",meanR2,"+/-",errR2)
Mean score: 0.581439525878 +/- 0.0261081940412
In [26]:
KNNz = KNN_tuned.best_estimator_
KNNz.fit(X_train, y_train)
Out[26]:
KNeighborsRegressor(algorithm='auto', leaf_size=30, metric='minkowski',
metric_params=None, n_neighbors=8, p=1, weights='distance')
In [27]:
j = 571
one_pretend_quasar = X_test[j,:]
zphoto = KNNz.predict(one_pretend_quasar)
zspec = y_test[j]
print("True redshift cf. KNN photo-z:",zspec,zphoto)
True redshift cf. KNN photo-z: 1.626005 [ 1.61894793]
In [28]:
zspec = y_test
zphoto = KNNz.predict(X_test)
plot(zspec, zphoto,'o',alpha=0.1)
title("KNNz performance")
xlabel("Spectroscopic Redshift")
ylabel("Photometric redshift")
lims = [0.0,4.0]
xlim(lims)
ylim(lims)
plot(lims, lims, ':k')
Out[28]:
[<matplotlib.lines.Line2D at 0x10a3309d0>]
In [29]:
all_sources = pd.read_csv("data/qso10000.csv",index_col=0,usecols=["objid","dered_r","u_g_color",\
"g_r_color","r_i_color","i_z_color","diff_u",\
"diff_g1","diff_i","diff_z","class"])[:1000]
all_sources = all_sources.append(pd.read_csv("data/star1000.csv",index_col=0,usecols=["objid","dered_r","u_g_color",\
"g_r_color","r_i_color","i_z_color","diff_u",\
"diff_g1","diff_i","diff_z","class"]))
all_sources = all_sources.append(pd.read_csv("data/galaxy1000.csv",index_col=0,usecols=["objid","dered_r","u_g_color",\
"g_r_color","r_i_color","i_z_color","diff_u",\
"diff_g1","diff_i","diff_z","class"]))
all_sources = all_sources[(all_sources["dered_r"] > -9999) & (all_sources["g_r_color"] > -10) & (all_sources["g_r_color"] < 10)]
all_labels = all_sources["class"]
all_features = copy.copy(all_sources)
del all_features["class"]
X = copy.copy(all_features.values)
y = copy.copy(all_labels.values)
In [30]:
all_labels.tail()
Out[30]:
objid
1237657775542632759 GALAXY
1237657775542698090 GALAXY
1237657775542698177 GALAXY
1237657630586634463 GALAXY
1237657630049698007 GALAXY
Name: class, dtype: object
In [31]:
print("Feature vector shape =", X.shape)
print("Class label vector shape =", y.shape)
Feature vector shape = (3000, 9)
Class label vector shape = (3000,)
What structure can we see in the data? Let's plot all the features as before.
In [32]:
yy = all_labels.values.copy()
yy[yy=="QSO"] = 0.0 # Red
yy[yy=="STAR"] = 0.5 # Green
yy[yy=="GALAXY"] = 1.0 # Blue
norm = mpl.colors.Normalize(vmin=min(yy), vmax=max(yy))
cmap = cm.jet_r
m = cm.ScalarMappable(norm=norm, cmap=cmap)
rez = pd.scatter_matrix(all_features,alpha=0.2,figsize=[15,15],color=m.to_rgba(yy))
In [33]:
from sklearn.ensemble import RandomForestClassifier
rf = RandomForestClassifier(n_estimators=100,oob_score=True)
rf.fit(X,y)
Out[33]:
RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini',
max_depth=None, max_features='auto', max_leaf_nodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=100, n_jobs=1,
oob_score=True, random_state=None, verbose=0, warm_start=False)
What are the important features in the data?
In [36]:
sorted(zip(all_sources.columns.values,rf.feature_importances_),key=lambda q: q[1],reverse=True)
Out[36]:
[('u_g_color', 0.25397713059808968),
('diff_g1', 0.18328375353501078),
('diff_i', 0.13841198702897281),
('diff_z', 0.11583445541491962),
('g_r_color', 0.10521681242149176),
('diff_u', 0.067486541953700213),
('dered_r', 0.049900786896641583),
('r_i_color', 0.049365799894167832),
('i_z_color', 0.036522732257005794)]
In [38]:
rf.oob_score_
Out[38]:
0.95433333333333337
This is the "Out of Bag" accuracy (of predicted y compared to truth), made available by ensemble classifiers. (Each decision tree in the ensemble is only working on a subset of the data, so it can track its accuracy with the data not in its own bag.)
The accuracy of a classifier is the fraction of predictions made that are correct. This one looks like its doing well - but this is the accuracy on the training set.
In [39]:
# Parameter values to try:
parameters = {'n_estimators':(50,100,200),"max_features": ["auto",3],
'criterion':["gini","entropy"],"min_samples_leaf": [1,2]}
# Initial training/test split:
X_train, X_test, y_train, y_test = train_test_split(X, y)
In [40]:
# Do a grid search to find the highest 3-fold CV score:
rf_tuned = GridSearchCV(rf, parameters, cv=3, verbose=1)
RFselector = rf_tuned.fit(X_train, y_train)
# Print the best score and estimator:
print(RFselector.best_score_)
print(RFselector.best_estimator_)
[Parallel(n_jobs=1)]: Done 1 jobs | elapsed: 0.2s
[Parallel(n_jobs=1)]: Done 50 jobs | elapsed: 17.9s
Fitting 3 folds for each of 24 candidates, totalling 72 fits
0.953333333333
RandomForestClassifier(bootstrap=True, class_weight=None, criterion='entropy',
max_depth=None, max_features='auto', max_leaf_nodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=50, n_jobs=1,
oob_score=True, random_state=None, verbose=0, warm_start=False)
[Parallel(n_jobs=1)]: Done 72 out of 72 | elapsed: 29.1s finished
One way of visualizing classification accuracy is via a confusion matrix:
In [41]:
y_pred = RFselector.predict(X_test)
In [42]:
# Compute confusion matrix:
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_pred)
plt.matshow(cm)
plt.title('Confusion matrix')
plt.colorbar()
plt.ylabel('True label')
plt.xlabel('Predicted label')
Out[42]:
<matplotlib.text.Text at 0x11ac1f590>
Each output label comes with a classification probability, computed from the results of the whole forest. To select a sample of classified objects, one can choose a selection threshold in this class probability, and only keep objects with higher probability than this threshold.
The availability of a class probability leads to an important diagnostic: the "Receiver Operating Characteristic" or "ROC" curve. This shows the true positive rate (TPR) plotted against the false positive rate (FPR) of a classifier, as the selection threshold is varied.
Typically, classifiers have control parameters that affect both the TPR and FPR (often improving one at the expense of the other), so the ROC curve is a good tool for investigating these parameters.
Likewise, ROC curves provide a very good way to compare different classifiers.
Content source: enoordeh/StatisticalMethods
Similar notebooks: